
How do you find the slope of $y = - \dfrac{5}{2}x - 5?$
Answer
531.9k+ views
Hint: To find the slope of the given equation, find the derivative of the given equation with respect to $x$, because slope is also known as the change in “y” with change in “x”.
Complete step by step solution:
In order to find the slope of the line $y = - \dfrac{5}{2}x - 5$, we will find its derivative with respect to $x$ as follows
$ \Rightarrow y = - \dfrac{5}{2}x - 5$
Differentiating both sides of the equation, with respect to $x$, we will get
$
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d\left( { - \dfrac{5}{2}x - 5} \right)}}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{5}{2} \\
$
Therefore $ - \dfrac{5}{2}$ is the required slope of the given straight line equation.
Additional information:
There are two more methods to find out the slope of the given straight line equation, first one is express the given straight line equation in slope intercept form of straight line which is given as $y = mx + c$ where $m\,{\text{and}}\;c$ are slope of the straight line and its y-intercept respectively. And after expressing it in slope intercept form, compare it to the standard equation of slope intercept form to get the required value of slope. Second one is the method derived from the definition of slope that is slope is the changes in “y” with change in “x”, in this method find any two points from which the line is passing and then slope will be given as ratio of difference between their y-coordinates to x-coordinates. These two methods are only suitable for the equation of a straight line whereas the differentiation method holds good for all types of equations.
Note: When differentiating, take care of the fact that you are differentiating each and every term of the equation either variable or constant. Also the derivative of any constant is zero irrespective of the irrespective of the base by which you are differentiating.
Complete step by step solution:
In order to find the slope of the line $y = - \dfrac{5}{2}x - 5$, we will find its derivative with respect to $x$ as follows
$ \Rightarrow y = - \dfrac{5}{2}x - 5$
Differentiating both sides of the equation, with respect to $x$, we will get
$
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d\left( { - \dfrac{5}{2}x - 5} \right)}}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{5}{2} \\
$
Therefore $ - \dfrac{5}{2}$ is the required slope of the given straight line equation.
Additional information:
There are two more methods to find out the slope of the given straight line equation, first one is express the given straight line equation in slope intercept form of straight line which is given as $y = mx + c$ where $m\,{\text{and}}\;c$ are slope of the straight line and its y-intercept respectively. And after expressing it in slope intercept form, compare it to the standard equation of slope intercept form to get the required value of slope. Second one is the method derived from the definition of slope that is slope is the changes in “y” with change in “x”, in this method find any two points from which the line is passing and then slope will be given as ratio of difference between their y-coordinates to x-coordinates. These two methods are only suitable for the equation of a straight line whereas the differentiation method holds good for all types of equations.
Note: When differentiating, take care of the fact that you are differentiating each and every term of the equation either variable or constant. Also the derivative of any constant is zero irrespective of the irrespective of the base by which you are differentiating.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

