
Find the slope of the tangent to the curve $x=a{{t}^{2}}$ and $y=2at$ at t=1.
Answer
585.3k+ views
Hint: We solve this problem by first discussing the property that is slope of tangent at point $\left( {{x}_{1}},{{y}_{1}} \right)$ on the curve $y=f\left( x \right)$ is equal to ${{\left. \dfrac{dy}{dx} \right]}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$. Then we find the values of \[\dfrac{dy}{dt}\] and $\dfrac{dx}{dt}$ by differentiating $y=2at$ and $x=a{{t}^{2}}$ with respective to t using the formula, $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$. Then we substitute this values in $\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}$ and then substitute the value $t=1$ in it to find the slope of the required tangent.
Complete step-by-step solution:
The curve we are given is $x=a{{t}^{2}}$ and $y=2at$.
We need to find the slope of the tangent to this curve at t=1.
Here the equation of the curve is given in the parametric form.
Now let us remember the property that,
The slope of any curve y given by $y=f\left( x \right)$ at any point $\left( {{x}_{1}},{{y}_{1}} \right)$ is equal to the value of $\dfrac{dy}{dx}$ at that point, that is slope of tangent at $\left( {{x}_{1}},{{y}_{1}} \right)$ on the curve is equal to ${{\left. \dfrac{dy}{dx} \right]}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$.
Here the curve we are given is $x=a{{t}^{2}}$ and $y=2at$.
We need to find the slope of the tangent to this curve at point t=1. From the above-discussed property,
Slope of the tangent = ${{\left. \dfrac{dy}{dx} \right]}_{t=1}}$
So first, let us find the value of $\dfrac{dy}{dx}$ for the given curve.
We can write $\dfrac{dy}{dx}$ as,
$\Rightarrow \dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}............\left( 1 \right)$
Now let us consider $y=2at$.
Let us differentiate it with respect to t.
Let us consider the formula for differentiation,
$\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$
Using this formula, we get,
$\Rightarrow \dfrac{dy}{dt}=2a.........\left( 2 \right)$
Now let us consider $x=a{{t}^{2}}$.
Let us differentiate it with respect to t.
Let us consider the formula for differentiation,
$\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$
Using this formula, we get,
$\begin{align}
& \Rightarrow \dfrac{dx}{dt}=a\left( 2t \right) \\
& \Rightarrow \dfrac{dx}{dt}=2at.........\left( 3 \right) \\
\end{align}$
Substituting the values in equations (2) and (3) in equation (1) we get,
$\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{2a}{2at} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{t} \\
\end{align}$
As we need to find the value of ${{\left. \dfrac{dy}{dx} \right]}_{t=1}}$ let us substitute the value t=1 in the above obtained value of $\dfrac{dy}{dx}$. Then we get,
$\begin{align}
& \Rightarrow {{\left. \dfrac{dy}{dx} \right]}_{t=1}}={{\left. \dfrac{1}{t} \right]}_{t=1}} \\
& \Rightarrow {{\left. \dfrac{dy}{dx} \right]}_{t=1}}=1 \\
\end{align}$
So, we get that slope of the tangent to given curve at t=1 is equal to 1.
Hence answer is 1.
Note: We can also solve this question in another process.
We need to find the slope of the tangent to the curve $x=a{{t}^{2}}$ and $y=2at$ at point t=1.
Now let us find the equation of curve
$\begin{align}
& \Rightarrow x=a{{t}^{2}} \\
& \Rightarrow {{t}^{2}}=\dfrac{x}{a} \\
\end{align}$
$\begin{align}
& \Rightarrow y=2at \\
& \Rightarrow t=\dfrac{y}{2a} \\
\end{align}$
Using these two values we get,
$\begin{align}
& \Rightarrow {{\left( \dfrac{y}{2a} \right)}^{2}}=\dfrac{x}{a} \\
& \Rightarrow \dfrac{{{y}^{2}}}{4{{a}^{2}}}=\dfrac{x}{a} \\
& \Rightarrow {{y}^{2}}=4ax \\
\end{align}$
At, t=1
$\begin{align}
& \Rightarrow x=a{{t}^{2}}=a{{\left( 1 \right)}^{2}}=a \\
& \Rightarrow y=2at=2a\left( 1 \right)=2a \\
\end{align}$
So, we need to find the slope of tangent at the point $\left( a,2a \right)$.
First let us find the value of $\dfrac{dy}{dx}$.
Now let us consider the curve ${{y}^{2}}=4ax$.
Now let us differentiate with respective to x. Then we get,
Let us consider the formula for differentiation,
$\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$
Using this formula, we get,
$\begin{align}
& \Rightarrow 2y\dfrac{dy}{dx}=4a \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{2a}{y} \\
\end{align}$
Now let us find the value of ${{\left. \dfrac{dy}{dx} \right]}_{\left( a,2a \right)}}$.
$\Rightarrow {{\left. \dfrac{dy}{dx} \right]}_{\left( a,2a \right)}}=\dfrac{2a}{2a}=1$
So, we get the slope of a tangent as 1.
Hence answer is 1.
Complete step-by-step solution:
The curve we are given is $x=a{{t}^{2}}$ and $y=2at$.
We need to find the slope of the tangent to this curve at t=1.
Here the equation of the curve is given in the parametric form.
Now let us remember the property that,
The slope of any curve y given by $y=f\left( x \right)$ at any point $\left( {{x}_{1}},{{y}_{1}} \right)$ is equal to the value of $\dfrac{dy}{dx}$ at that point, that is slope of tangent at $\left( {{x}_{1}},{{y}_{1}} \right)$ on the curve is equal to ${{\left. \dfrac{dy}{dx} \right]}_{\left( {{x}_{1}},{{y}_{1}} \right)}}$.
Here the curve we are given is $x=a{{t}^{2}}$ and $y=2at$.
We need to find the slope of the tangent to this curve at point t=1. From the above-discussed property,
Slope of the tangent = ${{\left. \dfrac{dy}{dx} \right]}_{t=1}}$
So first, let us find the value of $\dfrac{dy}{dx}$ for the given curve.
We can write $\dfrac{dy}{dx}$ as,
$\Rightarrow \dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}............\left( 1 \right)$
Now let us consider $y=2at$.
Let us differentiate it with respect to t.
Let us consider the formula for differentiation,
$\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$
Using this formula, we get,
$\Rightarrow \dfrac{dy}{dt}=2a.........\left( 2 \right)$
Now let us consider $x=a{{t}^{2}}$.
Let us differentiate it with respect to t.
Let us consider the formula for differentiation,
$\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$
Using this formula, we get,
$\begin{align}
& \Rightarrow \dfrac{dx}{dt}=a\left( 2t \right) \\
& \Rightarrow \dfrac{dx}{dt}=2at.........\left( 3 \right) \\
\end{align}$
Substituting the values in equations (2) and (3) in equation (1) we get,
$\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{2a}{2at} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{t} \\
\end{align}$
As we need to find the value of ${{\left. \dfrac{dy}{dx} \right]}_{t=1}}$ let us substitute the value t=1 in the above obtained value of $\dfrac{dy}{dx}$. Then we get,
$\begin{align}
& \Rightarrow {{\left. \dfrac{dy}{dx} \right]}_{t=1}}={{\left. \dfrac{1}{t} \right]}_{t=1}} \\
& \Rightarrow {{\left. \dfrac{dy}{dx} \right]}_{t=1}}=1 \\
\end{align}$
So, we get that slope of the tangent to given curve at t=1 is equal to 1.
Hence answer is 1.
Note: We can also solve this question in another process.
We need to find the slope of the tangent to the curve $x=a{{t}^{2}}$ and $y=2at$ at point t=1.
Now let us find the equation of curve
$\begin{align}
& \Rightarrow x=a{{t}^{2}} \\
& \Rightarrow {{t}^{2}}=\dfrac{x}{a} \\
\end{align}$
$\begin{align}
& \Rightarrow y=2at \\
& \Rightarrow t=\dfrac{y}{2a} \\
\end{align}$
Using these two values we get,
$\begin{align}
& \Rightarrow {{\left( \dfrac{y}{2a} \right)}^{2}}=\dfrac{x}{a} \\
& \Rightarrow \dfrac{{{y}^{2}}}{4{{a}^{2}}}=\dfrac{x}{a} \\
& \Rightarrow {{y}^{2}}=4ax \\
\end{align}$
At, t=1
$\begin{align}
& \Rightarrow x=a{{t}^{2}}=a{{\left( 1 \right)}^{2}}=a \\
& \Rightarrow y=2at=2a\left( 1 \right)=2a \\
\end{align}$
So, we need to find the slope of tangent at the point $\left( a,2a \right)$.
First let us find the value of $\dfrac{dy}{dx}$.
Now let us consider the curve ${{y}^{2}}=4ax$.
Now let us differentiate with respective to x. Then we get,
Let us consider the formula for differentiation,
$\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$
Using this formula, we get,
$\begin{align}
& \Rightarrow 2y\dfrac{dy}{dx}=4a \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{2a}{y} \\
\end{align}$
Now let us find the value of ${{\left. \dfrac{dy}{dx} \right]}_{\left( a,2a \right)}}$.
$\Rightarrow {{\left. \dfrac{dy}{dx} \right]}_{\left( a,2a \right)}}=\dfrac{2a}{2a}=1$
So, we get the slope of a tangent as 1.
Hence answer is 1.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

