Answer
Verified
401.7k+ views
Hint:Every time we have a negative sign in the root, which means the solution is imaginary. Since the number inside the square root is negative so we have an imaginary solution. Imaginary is represented as \[i\]. Square root is a number which produces a specified quantity when multiplied by itself. It is a factor of a number that when squared gives the number the square root.
Complete step by step solution:
Negative numbers do not have real square roots since a square is either positive or zero. The square roots of numbers that are not a perfect square are members of the irrational numbers. This means that they cannot be written as the quotient of two integers.
As we can see according to the question the number inside the square root is \[ - 9\], so the solution is imaginary.
\[i\]Or imaginary, equals to \[\sqrt { - 1} \], so we can take that out of the root.
Hence, we have
\[
\sqrt 9 \times \sqrt { - 1} \\
\Rightarrow 3 \times i \\
\Rightarrow 3i \\
\]
Hence the simplification of \[\sqrt { - 9} \] is \[3i\].
Note:All positive real numbers have two square roots, one positive square root and one negative square root. The positive square root is sometimes referred to as the principal square root. The reason that we have two square roots as exemplified above. The product of two numbers is positive if both numbers have the same sign as is the case with squares and square roots. A square root is written with a radical symbol \[\sqrt {} \] and the number or expression inside the radical symbol is called the radicand.
Complete step by step solution:
Negative numbers do not have real square roots since a square is either positive or zero. The square roots of numbers that are not a perfect square are members of the irrational numbers. This means that they cannot be written as the quotient of two integers.
As we can see according to the question the number inside the square root is \[ - 9\], so the solution is imaginary.
\[i\]Or imaginary, equals to \[\sqrt { - 1} \], so we can take that out of the root.
Hence, we have
\[
\sqrt 9 \times \sqrt { - 1} \\
\Rightarrow 3 \times i \\
\Rightarrow 3i \\
\]
Hence the simplification of \[\sqrt { - 9} \] is \[3i\].
Note:All positive real numbers have two square roots, one positive square root and one negative square root. The positive square root is sometimes referred to as the principal square root. The reason that we have two square roots as exemplified above. The product of two numbers is positive if both numbers have the same sign as is the case with squares and square roots. A square root is written with a radical symbol \[\sqrt {} \] and the number or expression inside the radical symbol is called the radicand.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Onam is the main festival of which state A Karnataka class 7 social science CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Who was the founder of muslim league A Mohmmad ali class 10 social science CBSE
Select the word that is correctly spelled a Twelveth class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers