
Find the rationalizing factor of: \[\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\]
A. \[\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right)\left( {8 - 2\sqrt {30} } \right)\]
B. \[\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right)\]
C. \[\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right)\left( {8 + 2\sqrt {30} } \right)\]
D. None of the above
Answer
611.4k+ views
Hint: The factor of multiplication by which rationalization is done is called the rationalizing factor. So, rationalize the given expression by using the formula \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\] twice to obtain the required answer.
Complete step-by-step answer:
Rationalising factor means the term by which we convert irrational numbers to rational numbers.
So, it means we have to choose a term by which we make \[\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\] is a rational number.
We know that, \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\]
Since,
\[
\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right) = {\left( {\sqrt 3 + \sqrt {10} } \right)^2} - {\left( {\sqrt 5 } \right)^2} \\
\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right) = 3 + 10 + 2\sqrt 3 \sqrt {10} - 5 \\
\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right) = 8 + 2\sqrt {30} \\
\]
And
\[
\left( {8 + 2\sqrt {30} } \right)\left( {8 - 2\sqrt {30} } \right) = {8^2} - {\left( {2\sqrt {30} } \right)^2} \\
\left( {8 + 2\sqrt {30} } \right)\left( {8 - 2\sqrt {30} } \right) = 64 - 4 \times 30 \\
\left( {8 + 2\sqrt {30} } \right)\left( {8 - 2\sqrt {30} } \right) = 64 - 120 = - 56 \\
\]
Therefore, \[\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right)\left( {8 - 2\sqrt {30} } \right) = - 56\] which is a rational number.
Hence, \[\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right)\left( {8 - 2\sqrt {30} } \right)\] is a rational number \[\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\].
Thus, the correct option is A. \[\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right)\left( {8 - 2\sqrt {30} } \right)\]
Note: In this question, the given expression \[\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\] is a Surd. If the product of two or more surds is a rational number then they are rationalizing factors to each other. Sometimes we divide to get the rationalizing factor.
Complete step-by-step answer:
Rationalising factor means the term by which we convert irrational numbers to rational numbers.
So, it means we have to choose a term by which we make \[\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\] is a rational number.
We know that, \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\]
Since,
\[
\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right) = {\left( {\sqrt 3 + \sqrt {10} } \right)^2} - {\left( {\sqrt 5 } \right)^2} \\
\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right) = 3 + 10 + 2\sqrt 3 \sqrt {10} - 5 \\
\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right) = 8 + 2\sqrt {30} \\
\]
And
\[
\left( {8 + 2\sqrt {30} } \right)\left( {8 - 2\sqrt {30} } \right) = {8^2} - {\left( {2\sqrt {30} } \right)^2} \\
\left( {8 + 2\sqrt {30} } \right)\left( {8 - 2\sqrt {30} } \right) = 64 - 4 \times 30 \\
\left( {8 + 2\sqrt {30} } \right)\left( {8 - 2\sqrt {30} } \right) = 64 - 120 = - 56 \\
\]
Therefore, \[\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right)\left( {8 - 2\sqrt {30} } \right) = - 56\] which is a rational number.
Hence, \[\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right)\left( {8 - 2\sqrt {30} } \right)\] is a rational number \[\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\].
Thus, the correct option is A. \[\left( {\sqrt 3 + \sqrt {10} + \sqrt 5 } \right)\left( {8 - 2\sqrt {30} } \right)\]
Note: In this question, the given expression \[\left( {\sqrt 3 + \sqrt {10} - \sqrt 5 } \right)\] is a Surd. If the product of two or more surds is a rational number then they are rationalizing factors to each other. Sometimes we divide to get the rationalizing factor.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

Name 10 Living and Non living things class 9 biology CBSE

What is the full form of pH?

Write the 6 fundamental rights of India and explain in detail

