
How do you find the ratio of $x$ to $y$ given $5x=6y$?
Answer
558k+ views
Hint: We explain the process to get ratio of two numbers $x$ and $y$. From the equation $5x=6y$, we try to describe the relation between the denominator and the numerator. We use the G.C.D of the denominator and the numerator to divide both of them. We get the simplified form as the G.C.D is 1.
Complete step by step solution:
The ratio is used to find the unitary value of a particular number with respect to the other number.
Therefore, for the ratio of any two numbers $x$ and $y$, we can express it as $\dfrac{x}{y}$. Ratios work like fractions. The numbers become the numerator and denominator of the ratio.
Simplified form is achieved when the G.C.D of the denominator and the numerator is 1.
This means we can’t eliminate any more common root from them other than 1.
For the fraction $\dfrac{x}{y}$, we first find the G.C.D of the denominator and the numerator. If it’s 1 then it’s already in its simplified form and if the G.C.D of the denominator and the numerator is any other number d then we need to divide the denominator and the numerator with d and get the simplified fraction form as $\dfrac{{}^{x}/{}_{d}}{{}^{y}/{}_{d}}$.
For the equation $5x=6y$, we get $\dfrac{x}{y}=\dfrac{6}{5}$.
Note: The process is similar for both proper and improper fractions or ratios. In case of mixed fractions, we need to convert it into an improper fraction and then apply the case. Also, we can only apply the process on the proper fraction part of a mixed fraction.
Complete step by step solution:
The ratio is used to find the unitary value of a particular number with respect to the other number.
Therefore, for the ratio of any two numbers $x$ and $y$, we can express it as $\dfrac{x}{y}$. Ratios work like fractions. The numbers become the numerator and denominator of the ratio.
Simplified form is achieved when the G.C.D of the denominator and the numerator is 1.
This means we can’t eliminate any more common root from them other than 1.
For the fraction $\dfrac{x}{y}$, we first find the G.C.D of the denominator and the numerator. If it’s 1 then it’s already in its simplified form and if the G.C.D of the denominator and the numerator is any other number d then we need to divide the denominator and the numerator with d and get the simplified fraction form as $\dfrac{{}^{x}/{}_{d}}{{}^{y}/{}_{d}}$.
For the equation $5x=6y$, we get $\dfrac{x}{y}=\dfrac{6}{5}$.
Note: The process is similar for both proper and improper fractions or ratios. In case of mixed fractions, we need to convert it into an improper fraction and then apply the case. Also, we can only apply the process on the proper fraction part of a mixed fraction.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

What are the 12 elements of nature class 8 chemistry CBSE

What is the difference between rai and mustard see class 8 biology CBSE

When people say No pun intended what does that mea class 8 english CBSE

Write a letter to the Municipal Commissioner to inform class 8 english CBSE

Explain the role of the opposition party in a demo class 8 social studies CBSE


