
Find the ratio in which the line segment joining the points $A\left( {3, - 3} \right)$ and $B\left( { - 2,7} \right)$ is divided by the $x - $ axis. Also find the coordinates of the point of division.
Answer
609.6k+ views
Hint – In order to solve this question, we will use section formula i.e. $\left( {x = \dfrac{{{m_1}{x_2} + {m_2}{x_1}}}{{{m_1} + {m_2}}}{\text{ }},{\text{ }}y = \dfrac{{{m_1}{y_2} + {m_2}{y_1}}}{{{m_1} + {m_2}}}} \right)$ . In this way we will get our desired answer.
Complete Step-by-Step solution:
Now given points are,
$A\left( {3, - 3} \right)$ and $B\left( { - 2,7} \right)$.
Now we have to find out the coordinates of the point of division by using the section formula.
Section formula-This formula tells us the coordinates of the point which divides a given line segment into two parts such that their lengths are in the ratio m: n.
$\left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}{\text{ }},{\text{ }}y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right)$ .
Here, $\left( {{x_1} = 3,{y_1} = - 3} \right)$ , $\left( {{x_2} = - 2,{y_2} = 7} \right)$ .
And m:n$ = $k:1
Given that the points are divided by $x - $ axis i.e. $P\left( {x,0} \right)$ and we know that the $y$ coordinate of $x - $ axis is zero$\left( 0 \right)$ .
$x = \dfrac{{ - 2k + 3}}{{k + 1}}$$ - - - - - - - - \left( 1 \right)$
And $y = 0 = \dfrac{{7k - 3}}{{k + 1}}$
Or $7k - 3 = 0$
Or $7k = 3$
Or $k = \dfrac{3}{7}$
Substituting the value of $k$ in equation $\left( 1 \right)$ ,
$x = \dfrac{{ - 2 \times \left( {\dfrac{3}{7}} \right) + 3 \times 1}}{{k + 1}}$
Or $x = \dfrac{{\dfrac{{ - 6}}{7} + 3}}{{\dfrac{3}{7} + 1}}$
Or $x = \dfrac{{\dfrac{{ - 6 + 21}}{7}}}{{\dfrac{{3 + 7}}{7}}}$
Or $x = \dfrac{{15}}{{10}}$
Thus , $x = \dfrac{3}{2}$
Hence, $P\left( {\dfrac{3}{2},0} \right)$
Note –Whenever we face this type of question the key concept is that. Simply , we have to apply Section formula as theses points are divided by $x - $ axis the $y$coordinates must be zero i.e. $P\left( {x,0} \right)$ .
Complete Step-by-Step solution:
Now given points are,
$A\left( {3, - 3} \right)$ and $B\left( { - 2,7} \right)$.
Now we have to find out the coordinates of the point of division by using the section formula.
Section formula-This formula tells us the coordinates of the point which divides a given line segment into two parts such that their lengths are in the ratio m: n.
$\left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}{\text{ }},{\text{ }}y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right)$ .
Here, $\left( {{x_1} = 3,{y_1} = - 3} \right)$ , $\left( {{x_2} = - 2,{y_2} = 7} \right)$ .
And m:n$ = $k:1
Given that the points are divided by $x - $ axis i.e. $P\left( {x,0} \right)$ and we know that the $y$ coordinate of $x - $ axis is zero$\left( 0 \right)$ .
$x = \dfrac{{ - 2k + 3}}{{k + 1}}$$ - - - - - - - - \left( 1 \right)$
And $y = 0 = \dfrac{{7k - 3}}{{k + 1}}$
Or $7k - 3 = 0$
Or $7k = 3$
Or $k = \dfrac{3}{7}$
Substituting the value of $k$ in equation $\left( 1 \right)$ ,
$x = \dfrac{{ - 2 \times \left( {\dfrac{3}{7}} \right) + 3 \times 1}}{{k + 1}}$
Or $x = \dfrac{{\dfrac{{ - 6}}{7} + 3}}{{\dfrac{3}{7} + 1}}$
Or $x = \dfrac{{\dfrac{{ - 6 + 21}}{7}}}{{\dfrac{{3 + 7}}{7}}}$
Or $x = \dfrac{{15}}{{10}}$
Thus , $x = \dfrac{3}{2}$
Hence, $P\left( {\dfrac{3}{2},0} \right)$
Note –Whenever we face this type of question the key concept is that. Simply , we have to apply Section formula as theses points are divided by $x - $ axis the $y$coordinates must be zero i.e. $P\left( {x,0} \right)$ .
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

How is gypsum formed class 10 chemistry CBSE

If the line 3x + 4y 24 0 intersects the xaxis at t-class-10-maths-CBSE

Sugar present in DNA is A Heptose B Hexone C Tetrose class 10 biology CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

What are luminous and Non luminous objects class 10 physics CBSE

