
How to find the range of \[{\sin ^2}x + {\cos ^4}x\]
Answer
560.7k+ views
Hint: We have to derivation of the finding the range of the required trigonometric relation. At first, we will try to convert the given trigonometric function into a simplest for by using the trigonometric relations. Using the range of sine and cosine terms, we will get the final answer. From there we can easily find the range of the given function.
Formula used: As we know that, the range of \[\sin x\] and \[\cos x\] is \[[ - 1,1]\] and also we know that, \[\sin 2x = 2\sin x\cos x\]
Using this formula, we will convert \[{\sin ^2}x + {\cos ^4}x\] in terms of \[\sin x\] or \[\cos x\] function.
Complete step-by-step answer:
We have to find the range of \[{\sin ^2}x + {\cos ^4}x\].
We already know that the range of \[\sin x\] is \[[ - 1,1]\].
The range of \[\cos x\] is \[[ - 1,1]\].
Let us take, \[f(x) = {\sin ^2}x + {\cos ^4}x\]
Simplifying we get,
$\Rightarrow$\[f(x) = 1 - {\cos ^2}x + {\cos ^4}x\]
Simplifying again we get,
$\Rightarrow$\[f(x) = 1 - {\cos ^2}x(1 - {\cos ^2}x)\]
Since, we know that, \[{\sin ^2}x + {\cos ^2}x = 1\]
Simplifying again we get,
$\Rightarrow$\[f(x) = 1 - {\sin ^2}x{\cos ^2}x\]
Simplifying again we get,
$\Rightarrow$\[f(x) = 1 - \dfrac{{4{{\sin }^2}x{{\cos }^2}x}}{4}\]
Simplifying again we get,
$\Rightarrow$\[f(x) = 1 - \dfrac{{{{\sin }^2}2x}}{4}\]..................… (1)
Since, we know that, \[\sin 2x = 2\sin x\cos x\]
We have,
\[ - 1 \leqslant \sin 2x \leqslant 1\]
Squaring the terms, we get,
$\Rightarrow$\[0 \leqslant {\sin ^2}2x \leqslant 1\]
Dividing all the terms by 4 we get,
$\Rightarrow$\[0 \leqslant \dfrac{{{{\sin }^2}2x}}{4} \leqslant \dfrac{1}{4}\]
Multiplying all the terms by -1 we get,
$\Rightarrow$\[0 \geqslant - \dfrac{{{{\sin }^2}2x}}{4} \geqslant - \dfrac{1}{4}\]
Adding all the terms by 1 we get,
$\Rightarrow$\[1 - \dfrac{1}{4} \leqslant 1 - \dfrac{{{{\sin }^2}2x}}{4} \leqslant 1 - 0\]
Simplifying we get,
$\Rightarrow$\[\dfrac{3}{4} \leqslant 1 - \dfrac{{{{\sin }^2}2x}}{4} \leqslant 1\]
From 1 we know that $1 - \dfrac{{{{\sin }^2}2x}}{4}$ is equal to ${\sin ^2}x + {\cos ^4}x$.
$\therefore $ The range of \[{\sin ^2}x + {\cos ^4}x\] is \[\left[ {\dfrac{3}{4},1} \right]\].
Note: We have to remember that, the domain of any function is the set of all possible inputs (x – values) of a function whereas the range of any function is the set of all possible respective outcomes (y – values) of the function.
Domain lies on the X – axis and range lies on Y – axis.
For example, the function \[f(x) = \sin x\] has all real numbers in its domain, but its range is \[ - 1 \leqslant \sin x \leqslant 1\] .
The values of the sine function are different, depending on whether the angle is in degrees or radians. The function is periodic with periodicity ${360^ \circ }$ or \[2\pi \] radians.
Formula used: As we know that, the range of \[\sin x\] and \[\cos x\] is \[[ - 1,1]\] and also we know that, \[\sin 2x = 2\sin x\cos x\]
Using this formula, we will convert \[{\sin ^2}x + {\cos ^4}x\] in terms of \[\sin x\] or \[\cos x\] function.
Complete step-by-step answer:
We have to find the range of \[{\sin ^2}x + {\cos ^4}x\].
We already know that the range of \[\sin x\] is \[[ - 1,1]\].
The range of \[\cos x\] is \[[ - 1,1]\].
Let us take, \[f(x) = {\sin ^2}x + {\cos ^4}x\]
Simplifying we get,
$\Rightarrow$\[f(x) = 1 - {\cos ^2}x + {\cos ^4}x\]
Simplifying again we get,
$\Rightarrow$\[f(x) = 1 - {\cos ^2}x(1 - {\cos ^2}x)\]
Since, we know that, \[{\sin ^2}x + {\cos ^2}x = 1\]
Simplifying again we get,
$\Rightarrow$\[f(x) = 1 - {\sin ^2}x{\cos ^2}x\]
Simplifying again we get,
$\Rightarrow$\[f(x) = 1 - \dfrac{{4{{\sin }^2}x{{\cos }^2}x}}{4}\]
Simplifying again we get,
$\Rightarrow$\[f(x) = 1 - \dfrac{{{{\sin }^2}2x}}{4}\]..................… (1)
Since, we know that, \[\sin 2x = 2\sin x\cos x\]
We have,
\[ - 1 \leqslant \sin 2x \leqslant 1\]
Squaring the terms, we get,
$\Rightarrow$\[0 \leqslant {\sin ^2}2x \leqslant 1\]
Dividing all the terms by 4 we get,
$\Rightarrow$\[0 \leqslant \dfrac{{{{\sin }^2}2x}}{4} \leqslant \dfrac{1}{4}\]
Multiplying all the terms by -1 we get,
$\Rightarrow$\[0 \geqslant - \dfrac{{{{\sin }^2}2x}}{4} \geqslant - \dfrac{1}{4}\]
Adding all the terms by 1 we get,
$\Rightarrow$\[1 - \dfrac{1}{4} \leqslant 1 - \dfrac{{{{\sin }^2}2x}}{4} \leqslant 1 - 0\]
Simplifying we get,
$\Rightarrow$\[\dfrac{3}{4} \leqslant 1 - \dfrac{{{{\sin }^2}2x}}{4} \leqslant 1\]
From 1 we know that $1 - \dfrac{{{{\sin }^2}2x}}{4}$ is equal to ${\sin ^2}x + {\cos ^4}x$.
$\therefore $ The range of \[{\sin ^2}x + {\cos ^4}x\] is \[\left[ {\dfrac{3}{4},1} \right]\].
Note: We have to remember that, the domain of any function is the set of all possible inputs (x – values) of a function whereas the range of any function is the set of all possible respective outcomes (y – values) of the function.
Domain lies on the X – axis and range lies on Y – axis.
For example, the function \[f(x) = \sin x\] has all real numbers in its domain, but its range is \[ - 1 \leqslant \sin x \leqslant 1\] .
The values of the sine function are different, depending on whether the angle is in degrees or radians. The function is periodic with periodicity ${360^ \circ }$ or \[2\pi \] radians.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

