
Find the principal value of the following: $\operatorname{cosec}\left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)$
Answer
508.8k+ views
Hint: To solve this question what we will do is, firstly by using inverse trigonometric identity that is \[si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] where $x\in \left[ -1,1 \right]$ , we will substitute the value of \[si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] in equation $\operatorname{cosec}\left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)$ and then using value of $\cos ec\left( \dfrac{\pi }{2} \right)$ which is equals to 1 , we will find out the principal value of $\operatorname{cosec}\left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)$.
Complete step-by-step solution:
Before we solve the question, let us see what is the meaning of the principal value of inverse trigonometric functions.
Now, the principal value of the inverse trigonometric function at a point x is the value of the inverse function at a point x, which lies in the range of the principal branch.
For example, principal branch of ${{\cos }^{-1}}x$ is $[0,\pi ]$ and principal value of ${{\sin }^{-1}}x$ is $[\dfrac{-\pi}{2}, \dfrac{\pi}{2} ]$ .
Now, in question we are asked to find the principal value of $\operatorname{cosec}\left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)$.
As, we know that, \[si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] where $x\in \left[ -1,1 \right]$
So, substituting value of \[si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] in $\operatorname{cosec}\left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)$, we get
$\operatorname{cosec}\left( si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2} \right)$
$=\operatorname{cosec}\left( \dfrac{\pi }{2} \right)$
Now, we know that at $x=\left( \dfrac{\pi }{2} \right)$, value of function $\operatorname{cosecx}$ is 1.
So, we get $\operatorname{cosec}\left( \dfrac{\pi }{2} \right)=1$
Hence, the principal value of $\operatorname{cosec}\left( si{{n}^{-1}}x+co{{s}^{-1}}x \right)$ is 1.
Note: To solve the questions of inverse trigonometric questions, one must know the meaning of principal value of inverse trigonometric function and principal branch too. Also, one must know the following inverse trigonometric formulas which are \[si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] for $x\in \left[ -1,1 \right]$, \[{{\tan }^{-1}}x\text{ }+\text{ }{{\cot }^{-1}}x\text{ }=~\dfrac{\pi }{2}\] for \[x\in R\] and \[{{\sec }^{-1}}x\text{ }+\text{ }{{\operatorname{cosec}}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] for |x| ≥ 1. Also, remember that the value of trigonometric function cosec x at $x=\left( \dfrac{\pi }{2} \right)$ is equal to 1. Try to avoid calculation error while solving the question.
Complete step-by-step solution:
Before we solve the question, let us see what is the meaning of the principal value of inverse trigonometric functions.
Now, the principal value of the inverse trigonometric function at a point x is the value of the inverse function at a point x, which lies in the range of the principal branch.
For example, principal branch of ${{\cos }^{-1}}x$ is $[0,\pi ]$ and principal value of ${{\sin }^{-1}}x$ is $[\dfrac{-\pi}{2}, \dfrac{\pi}{2} ]$ .
Now, in question we are asked to find the principal value of $\operatorname{cosec}\left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)$.
As, we know that, \[si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] where $x\in \left[ -1,1 \right]$
So, substituting value of \[si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] in $\operatorname{cosec}\left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)$, we get
$\operatorname{cosec}\left( si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2} \right)$
$=\operatorname{cosec}\left( \dfrac{\pi }{2} \right)$
Now, we know that at $x=\left( \dfrac{\pi }{2} \right)$, value of function $\operatorname{cosecx}$ is 1.
So, we get $\operatorname{cosec}\left( \dfrac{\pi }{2} \right)=1$
Hence, the principal value of $\operatorname{cosec}\left( si{{n}^{-1}}x+co{{s}^{-1}}x \right)$ is 1.
Note: To solve the questions of inverse trigonometric questions, one must know the meaning of principal value of inverse trigonometric function and principal branch too. Also, one must know the following inverse trigonometric formulas which are \[si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] for $x\in \left[ -1,1 \right]$, \[{{\tan }^{-1}}x\text{ }+\text{ }{{\cot }^{-1}}x\text{ }=~\dfrac{\pi }{2}\] for \[x\in R\] and \[{{\sec }^{-1}}x\text{ }+\text{ }{{\operatorname{cosec}}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] for |x| ≥ 1. Also, remember that the value of trigonometric function cosec x at $x=\left( \dfrac{\pi }{2} \right)$ is equal to 1. Try to avoid calculation error while solving the question.
Recently Updated Pages
Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

What is history A The science that tries to understand class 6 social science CBSE

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
