
Find the principal value of the following: $\operatorname{cosec}\left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)$
Answer
575.7k+ views
Hint: To solve this question what we will do is, firstly by using inverse trigonometric identity that is \[si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] where $x\in \left[ -1,1 \right]$ , we will substitute the value of \[si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] in equation $\operatorname{cosec}\left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)$ and then using value of $\cos ec\left( \dfrac{\pi }{2} \right)$ which is equals to 1 , we will find out the principal value of $\operatorname{cosec}\left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)$.
Complete step-by-step solution:
Before we solve the question, let us see what is the meaning of the principal value of inverse trigonometric functions.
Now, the principal value of the inverse trigonometric function at a point x is the value of the inverse function at a point x, which lies in the range of the principal branch.
For example, principal branch of ${{\cos }^{-1}}x$ is $[0,\pi ]$ and principal value of ${{\sin }^{-1}}x$ is $[\dfrac{-\pi}{2}, \dfrac{\pi}{2} ]$ .
Now, in question we are asked to find the principal value of $\operatorname{cosec}\left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)$.
As, we know that, \[si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] where $x\in \left[ -1,1 \right]$
So, substituting value of \[si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] in $\operatorname{cosec}\left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)$, we get
$\operatorname{cosec}\left( si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2} \right)$
$=\operatorname{cosec}\left( \dfrac{\pi }{2} \right)$
Now, we know that at $x=\left( \dfrac{\pi }{2} \right)$, value of function $\operatorname{cosecx}$ is 1.
So, we get $\operatorname{cosec}\left( \dfrac{\pi }{2} \right)=1$
Hence, the principal value of $\operatorname{cosec}\left( si{{n}^{-1}}x+co{{s}^{-1}}x \right)$ is 1.
Note: To solve the questions of inverse trigonometric questions, one must know the meaning of principal value of inverse trigonometric function and principal branch too. Also, one must know the following inverse trigonometric formulas which are \[si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] for $x\in \left[ -1,1 \right]$, \[{{\tan }^{-1}}x\text{ }+\text{ }{{\cot }^{-1}}x\text{ }=~\dfrac{\pi }{2}\] for \[x\in R\] and \[{{\sec }^{-1}}x\text{ }+\text{ }{{\operatorname{cosec}}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] for |x| ≥ 1. Also, remember that the value of trigonometric function cosec x at $x=\left( \dfrac{\pi }{2} \right)$ is equal to 1. Try to avoid calculation error while solving the question.
Complete step-by-step solution:
Before we solve the question, let us see what is the meaning of the principal value of inverse trigonometric functions.
Now, the principal value of the inverse trigonometric function at a point x is the value of the inverse function at a point x, which lies in the range of the principal branch.
For example, principal branch of ${{\cos }^{-1}}x$ is $[0,\pi ]$ and principal value of ${{\sin }^{-1}}x$ is $[\dfrac{-\pi}{2}, \dfrac{\pi}{2} ]$ .
Now, in question we are asked to find the principal value of $\operatorname{cosec}\left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)$.
As, we know that, \[si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] where $x\in \left[ -1,1 \right]$
So, substituting value of \[si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] in $\operatorname{cosec}\left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)$, we get
$\operatorname{cosec}\left( si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2} \right)$
$=\operatorname{cosec}\left( \dfrac{\pi }{2} \right)$
Now, we know that at $x=\left( \dfrac{\pi }{2} \right)$, value of function $\operatorname{cosecx}$ is 1.
So, we get $\operatorname{cosec}\left( \dfrac{\pi }{2} \right)=1$
Hence, the principal value of $\operatorname{cosec}\left( si{{n}^{-1}}x+co{{s}^{-1}}x \right)$ is 1.
Note: To solve the questions of inverse trigonometric questions, one must know the meaning of principal value of inverse trigonometric function and principal branch too. Also, one must know the following inverse trigonometric formulas which are \[si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] for $x\in \left[ -1,1 \right]$, \[{{\tan }^{-1}}x\text{ }+\text{ }{{\cot }^{-1}}x\text{ }=~\dfrac{\pi }{2}\] for \[x\in R\] and \[{{\sec }^{-1}}x\text{ }+\text{ }{{\operatorname{cosec}}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] for |x| ≥ 1. Also, remember that the value of trigonometric function cosec x at $x=\left( \dfrac{\pi }{2} \right)$ is equal to 1. Try to avoid calculation error while solving the question.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

Using Huygens wave theory derive Snells law of ref class 12 physics CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

