
Find the principal value of the following: $\operatorname{cosec}\left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)$
Answer
575.7k+ views
Hint: To solve this question what we will do is, firstly by using inverse trigonometric identity that is \[si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] where $x\in \left[ -1,1 \right]$ , we will substitute the value of \[si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] in equation $\operatorname{cosec}\left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)$ and then using value of $\cos ec\left( \dfrac{\pi }{2} \right)$ which is equals to 1 , we will find out the principal value of $\operatorname{cosec}\left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)$.
Complete step-by-step solution:
Before we solve the question, let us see what is the meaning of the principal value of inverse trigonometric functions.
Now, the principal value of the inverse trigonometric function at a point x is the value of the inverse function at a point x, which lies in the range of the principal branch.
For example, principal branch of ${{\cos }^{-1}}x$ is $[0,\pi ]$ and principal value of ${{\sin }^{-1}}x$ is $[\dfrac{-\pi}{2}, \dfrac{\pi}{2} ]$ .
Now, in question we are asked to find the principal value of $\operatorname{cosec}\left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)$.
As, we know that, \[si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] where $x\in \left[ -1,1 \right]$
So, substituting value of \[si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] in $\operatorname{cosec}\left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)$, we get
$\operatorname{cosec}\left( si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2} \right)$
$=\operatorname{cosec}\left( \dfrac{\pi }{2} \right)$
Now, we know that at $x=\left( \dfrac{\pi }{2} \right)$, value of function $\operatorname{cosecx}$ is 1.
So, we get $\operatorname{cosec}\left( \dfrac{\pi }{2} \right)=1$
Hence, the principal value of $\operatorname{cosec}\left( si{{n}^{-1}}x+co{{s}^{-1}}x \right)$ is 1.
Note: To solve the questions of inverse trigonometric questions, one must know the meaning of principal value of inverse trigonometric function and principal branch too. Also, one must know the following inverse trigonometric formulas which are \[si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] for $x\in \left[ -1,1 \right]$, \[{{\tan }^{-1}}x\text{ }+\text{ }{{\cot }^{-1}}x\text{ }=~\dfrac{\pi }{2}\] for \[x\in R\] and \[{{\sec }^{-1}}x\text{ }+\text{ }{{\operatorname{cosec}}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] for |x| ≥ 1. Also, remember that the value of trigonometric function cosec x at $x=\left( \dfrac{\pi }{2} \right)$ is equal to 1. Try to avoid calculation error while solving the question.
Complete step-by-step solution:
Before we solve the question, let us see what is the meaning of the principal value of inverse trigonometric functions.
Now, the principal value of the inverse trigonometric function at a point x is the value of the inverse function at a point x, which lies in the range of the principal branch.
For example, principal branch of ${{\cos }^{-1}}x$ is $[0,\pi ]$ and principal value of ${{\sin }^{-1}}x$ is $[\dfrac{-\pi}{2}, \dfrac{\pi}{2} ]$ .
Now, in question we are asked to find the principal value of $\operatorname{cosec}\left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)$.
As, we know that, \[si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] where $x\in \left[ -1,1 \right]$
So, substituting value of \[si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] in $\operatorname{cosec}\left( {{\sin }^{-1}}x+{{\cos }^{-1}}x \right)$, we get
$\operatorname{cosec}\left( si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2} \right)$
$=\operatorname{cosec}\left( \dfrac{\pi }{2} \right)$
Now, we know that at $x=\left( \dfrac{\pi }{2} \right)$, value of function $\operatorname{cosecx}$ is 1.
So, we get $\operatorname{cosec}\left( \dfrac{\pi }{2} \right)=1$
Hence, the principal value of $\operatorname{cosec}\left( si{{n}^{-1}}x+co{{s}^{-1}}x \right)$ is 1.
Note: To solve the questions of inverse trigonometric questions, one must know the meaning of principal value of inverse trigonometric function and principal branch too. Also, one must know the following inverse trigonometric formulas which are \[si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] for $x\in \left[ -1,1 \right]$, \[{{\tan }^{-1}}x\text{ }+\text{ }{{\cot }^{-1}}x\text{ }=~\dfrac{\pi }{2}\] for \[x\in R\] and \[{{\sec }^{-1}}x\text{ }+\text{ }{{\operatorname{cosec}}^{-1}}x\text{ }=~\dfrac{\pi }{2}\] for |x| ≥ 1. Also, remember that the value of trigonometric function cosec x at $x=\left( \dfrac{\pi }{2} \right)$ is equal to 1. Try to avoid calculation error while solving the question.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

December 10th of 1948 is an important day in the history class 12 sst CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

