
Find the principal value of \[{{\tan }^{-1}}\left( 1 \right)-{{\cos }^{-1}}\left( \dfrac{-1}{2} \right)+{{\sin }^{-1}}\left( \dfrac{-1}{2} \right)\].
Answer
593.1k+ views
Hint:For the above question we have to find the principal value of each of the inverse trigonometric functions in the given expression. Principal value of an inverse trigonometric function at a point x is that value which lies in the principal range. As we know that principal range for \[{{\sin }^{-1}}x\] is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\], for \[{{\tan }^{-1}}x\] is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\] and for \[co{{s}^{-1}}x\] is \[\left[ 0,\pi \right]\]. We can start solving by taking \[\theta ={{\tan }^{-1}}(1)\] and then taking tan on both sides to find the value of \[\theta \].
Complete step-by-step answer:
We have been given the expression \[{{\tan }^{-1}}\left( 1 \right)-{{\cos }^{-1}}\left( \dfrac{-1}{2} \right)+{{\sin }^{-1}}\left( \dfrac{-1}{2} \right)\].
Now let us suppose \[\theta ={{\tan }^{-1}}(1)\]
On taking tangent function to both sides, we get as follows:
\[\tan \theta =\tan \left[ {{\tan }^{-1}}(1) \right]\]
We know that \[\tan {{\tan }^{-1}}x=x\]
\[\Rightarrow \tan \theta =1\]
Since the principal range of \[{{\tan }^{-1}}x\] is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\],
So ‘\[\theta \]’ must lie between \[\dfrac{-\pi }{2}\] and \[\dfrac{\pi }{2}\].
We know that \[\tan \left( \dfrac{\pi }{4} \right)=1\]
Also, \[\dfrac{\pi }{4}\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)\]
\[\Rightarrow {{\tan }^{-1}}(1)=\dfrac{\pi }{4}\]
Thus let us suppose \[\theta ={{\cos }^{-1}}\left( \dfrac{-1}{2} \right)\]
On taking cosine function to both sides on equation, we get as follows:
\[\cos \theta =\cos \left[ {{\cos }^{-1}}\left( \dfrac{-1}{2} \right) \right]\]
We know that \[\cos \left( {{\cos }^{-1}}x \right)=x\].
\[\Rightarrow \cos \theta =\dfrac{-1}{2}\]
Since the principal range for \[{{\cos }^{-1}}x\] is \[\left[ 0,\pi \right]\],
So \[\theta \] must lie between 0 to \[\pi \] both included.
We know that \[\cos \dfrac{2\pi }{3}=\dfrac{-1}{2}\]
Also, \[\dfrac{2\pi }{3}\in \left[ 0,\pi \right]\]
\[\Rightarrow \theta ={{\cos }^{-1}}\left( \dfrac{-1}{2} \right)=\dfrac{2\pi }{3}\]
Again, let us suppose \[\theta ={{\sin }^{-1}}\left( \dfrac{-1}{2} \right)\]
On taking sine function to both sides, we get as follows:
\[\sin \theta =\sin \left[ {{\sin }^{-1}}\left( \dfrac{-1}{2} \right) \right]\]
We know that \[\sin \left[ {{\sin }^{-1}}x \right]=x\]
\[\Rightarrow \sin \theta =\dfrac{-1}{2}\]
Since the principal range for \[{{\sin }^{-1}}x\] is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\].
So \[\theta \] must lie between \[\dfrac{-\pi }{2}\] and \[\dfrac{\pi }{2}\] both values included.
We know that \[\sin \left( \dfrac{-\pi }{6} \right)=\dfrac{-1}{2}\]
\[\Rightarrow \theta ={{\sin }^{-1}}\left( \dfrac{-1}{2} \right)=\dfrac{-\pi }{6}\] as \[\dfrac{-\pi }{6}\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\]
Now substituting the values of \[{{\tan }^{-1}}(1),{{\cos }^{-1}}\left( \dfrac{-1}{2} \right),{{\sin }^{-1}}\left( \dfrac{-1}{2} \right)\] in the given expression we get as follows:
\[{{\tan }^{-1}}\left( 1 \right)-{{\cos }^{-1}}\left( \dfrac{-1}{2} \right)+{{\sin }^{-1}}\left( \dfrac{-1}{2} \right)=\dfrac{\pi }{4}+\dfrac{2\pi }{3}+\left( \dfrac{-\pi }{6} \right)=\dfrac{\pi }{4}+\dfrac{2\pi }{3}-\dfrac{\pi }{6}\]
On taking LCM of the terms we get as follows:
\[{{\tan }^{-1}}\left( 1 \right)-{{\cos }^{-1}}\left( \dfrac{-1}{2} \right)+{{\sin }^{-1}}\left( \dfrac{-1}{2} \right)=\dfrac{3\pi +8\pi -2\pi }{12}=\dfrac{9\pi }{12}=\dfrac{3\pi }{4}\]
Therefore, the value of the given expression is equal to \[\dfrac{3\pi }{4}\].
Note: Be careful while finding the values of inverse trigonometric functions and also check it once that the values must lie between the defined range of the corresponding function. Also remember if there are two values, one is positive and other is negative such that they are numerically same then the principal value of the trigonometric function will be positive one.
Complete step-by-step answer:
We have been given the expression \[{{\tan }^{-1}}\left( 1 \right)-{{\cos }^{-1}}\left( \dfrac{-1}{2} \right)+{{\sin }^{-1}}\left( \dfrac{-1}{2} \right)\].
Now let us suppose \[\theta ={{\tan }^{-1}}(1)\]
On taking tangent function to both sides, we get as follows:
\[\tan \theta =\tan \left[ {{\tan }^{-1}}(1) \right]\]
We know that \[\tan {{\tan }^{-1}}x=x\]
\[\Rightarrow \tan \theta =1\]
Since the principal range of \[{{\tan }^{-1}}x\] is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\],
So ‘\[\theta \]’ must lie between \[\dfrac{-\pi }{2}\] and \[\dfrac{\pi }{2}\].
We know that \[\tan \left( \dfrac{\pi }{4} \right)=1\]
Also, \[\dfrac{\pi }{4}\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)\]
\[\Rightarrow {{\tan }^{-1}}(1)=\dfrac{\pi }{4}\]
Thus let us suppose \[\theta ={{\cos }^{-1}}\left( \dfrac{-1}{2} \right)\]
On taking cosine function to both sides on equation, we get as follows:
\[\cos \theta =\cos \left[ {{\cos }^{-1}}\left( \dfrac{-1}{2} \right) \right]\]
We know that \[\cos \left( {{\cos }^{-1}}x \right)=x\].
\[\Rightarrow \cos \theta =\dfrac{-1}{2}\]
Since the principal range for \[{{\cos }^{-1}}x\] is \[\left[ 0,\pi \right]\],
So \[\theta \] must lie between 0 to \[\pi \] both included.
We know that \[\cos \dfrac{2\pi }{3}=\dfrac{-1}{2}\]
Also, \[\dfrac{2\pi }{3}\in \left[ 0,\pi \right]\]
\[\Rightarrow \theta ={{\cos }^{-1}}\left( \dfrac{-1}{2} \right)=\dfrac{2\pi }{3}\]
Again, let us suppose \[\theta ={{\sin }^{-1}}\left( \dfrac{-1}{2} \right)\]
On taking sine function to both sides, we get as follows:
\[\sin \theta =\sin \left[ {{\sin }^{-1}}\left( \dfrac{-1}{2} \right) \right]\]
We know that \[\sin \left[ {{\sin }^{-1}}x \right]=x\]
\[\Rightarrow \sin \theta =\dfrac{-1}{2}\]
Since the principal range for \[{{\sin }^{-1}}x\] is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\].
So \[\theta \] must lie between \[\dfrac{-\pi }{2}\] and \[\dfrac{\pi }{2}\] both values included.
We know that \[\sin \left( \dfrac{-\pi }{6} \right)=\dfrac{-1}{2}\]
\[\Rightarrow \theta ={{\sin }^{-1}}\left( \dfrac{-1}{2} \right)=\dfrac{-\pi }{6}\] as \[\dfrac{-\pi }{6}\in \left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\]
Now substituting the values of \[{{\tan }^{-1}}(1),{{\cos }^{-1}}\left( \dfrac{-1}{2} \right),{{\sin }^{-1}}\left( \dfrac{-1}{2} \right)\] in the given expression we get as follows:
\[{{\tan }^{-1}}\left( 1 \right)-{{\cos }^{-1}}\left( \dfrac{-1}{2} \right)+{{\sin }^{-1}}\left( \dfrac{-1}{2} \right)=\dfrac{\pi }{4}+\dfrac{2\pi }{3}+\left( \dfrac{-\pi }{6} \right)=\dfrac{\pi }{4}+\dfrac{2\pi }{3}-\dfrac{\pi }{6}\]
On taking LCM of the terms we get as follows:
\[{{\tan }^{-1}}\left( 1 \right)-{{\cos }^{-1}}\left( \dfrac{-1}{2} \right)+{{\sin }^{-1}}\left( \dfrac{-1}{2} \right)=\dfrac{3\pi +8\pi -2\pi }{12}=\dfrac{9\pi }{12}=\dfrac{3\pi }{4}\]
Therefore, the value of the given expression is equal to \[\dfrac{3\pi }{4}\].
Note: Be careful while finding the values of inverse trigonometric functions and also check it once that the values must lie between the defined range of the corresponding function. Also remember if there are two values, one is positive and other is negative such that they are numerically same then the principal value of the trigonometric function will be positive one.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

