
Find the principal value of \[ {\sin ^{ - 1}}\left( {\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}} \right) \].
Answer
595.2k+ views
Hint: The range of \[{\sin ^{ - 1}}x\] is between \[\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)\]. Equate the expression to \[\theta \]. Rationalize the given value of multiplying the numerator and denominator by \[\sqrt 2 \]. Thus find the value of \[\sin \theta \]. Now apply the equation to the basic trigonometric identity of \[\cos 2\theta \]. Simplify the expression and get the principal value.
Complete step-by-step answer:
A principal value of a function is the value selected at a point in the domain of a multiple-valued function, chosen so that the function has a single value at the point.The principal value of \[{\sin ^{ - 1}}x\] for \[x > 0\] , is the length of the arc of a unit circle centred at the origin which subtends an angle at the centre whose sine is x. For this reason \[{\sin ^{ - 1}}x\] is also denoted by \[\operatorname{arcsinx} \].
The principal value of \[{\sin ^{ - 1}}x\] branches to,
\[{\sin ^{ - 1}}x \in \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)\].
Hence the principal value of the given function will be between the range\[\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)\] .
Now we have been given the function,
${\sin ^{ - 1}}\left( {\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}} \right)$ for which we need to find the principal value.
Let us take the principal value of ${\sin ^{ - 1}}\left( {\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}} \right)$ as \[\theta\].
Thus, \[{\sin ^{ - 1}}\left( {\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}} \right) = \theta \]
Now we can write it as,
\[\sin \theta = \left( {\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}} \right)\]
Now let us rationalize the above expression by multiplying the numerator and denominator of the expression with \[\sqrt 2 \]. Thus we get,
$\sin \theta = \left( {\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}} \right) \times \dfrac{{\sqrt 2 }}{{\sqrt 2 }}$
$\sin \theta = \left( {\dfrac{{(\sqrt 3 - 1) \times \sqrt 2 }}{{2\sqrt 2 \times \sqrt 2 }}} \right) = \left( {\dfrac{{\sqrt 6 - \sqrt 2 }}{{2 \times 2}}} \right) = \left( {\dfrac{{\sqrt 6 - \sqrt 2 }}{4}} \right)$
$\sin \theta = \dfrac{{\sqrt 6 - \sqrt 2 }}{4}$
We know the basic trigonometric identity,
\[\cos 2\theta = 1 - 2{\sin ^2}\theta \]
Now let us substitute the value of \[{\sin ^2}\theta \] in the above expression.
\[{\sin ^2}\theta = \dfrac{{{{(\sqrt 6 - \sqrt 2 )}^2}}}{{{4^2}}}\]
We know the basic identity and use it to solve the following expression.
\[{(a - b)^2} = {a^2} - 2ab + {b^2}\]
${\sin ^2}\theta = \dfrac{{{{(\sqrt 6 - \sqrt 2 )}^2}}}{{{4^2}}} = \dfrac{{{{(\sqrt 6 )}^2} - 2 \times \sqrt 6 \times \sqrt 2 + {{(\sqrt 2 )}^2}}}{{16}}$
${\sin ^2}\theta = \dfrac{{6 - 2\sqrt {12} + 2}}{{16}} = \dfrac{{8 - 4\sqrt 3 }}{{16}} = 2\left( {\dfrac{{4 - 2\sqrt 3 }}{{16}}} \right) = \left( {\dfrac{{4 - 2\sqrt 3 }}{8}} \right)$
${\sin ^2}\theta = \left( {\dfrac{{4 - 2\sqrt 3 }}{8}} \right)$
Thus we got the required value of \[{\sin ^2}\theta \]. Now let us put this in the equation of \[\cos 2\theta \].
\[\cos 2\theta = 1 - 2 \times \left( {\dfrac{{4 - 2\sqrt 3 }}{8}} \right)\], now let us simplify it.
$\cos 2\theta = 1 - \dfrac{{4 - \sqrt 3 }}{4} = \dfrac{{4 - 4 + 2\sqrt 3 }}{4}$
$\cos 2\theta = \dfrac{{2\sqrt 3 }}{4} = \dfrac{{\sqrt 3 }}{2}$
$\cos 2\theta = \dfrac{{\sqrt 3 }}{2}$
From trigonometric table we know that,\[\cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2}\]
Substituting in above equation we get,
$\cos 2\theta=\cos \dfrac{\pi }{6}$
The general solution of trigonometric function $\cos x = \cos \alpha$ is given as $\cos x=2n\pi \pm\cos\alpha$
Hence the equation becomes,
\[
2\theta = 2n\pi \pm \dfrac{\pi }{6} \\
\theta = n\pi \pm \dfrac{\pi }{{12}} \\
\]
Thus we got the principal value of inverse sine function as \[\dfrac{\pi }{{12}}\],which lies between the range \[\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)\].
Thus the principal value is \[\dfrac{\pi }{{12}}\].
Note: We can also find the principal value of the above expression by using identities of sine function.
For the function, \[{\sin ^{ - 1}}\left( {\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}} \right)\], we can write \[\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\]as,
\[\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} = \left( {\dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }}} \right) - \left( {\dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }}} \right)\]
Now from the trigonometric table we know the value of these functions. Thus the above expression becomes,
$\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} = \left( {\dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }}} \right) - \left( {\dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }}} \right)$
$
= \left( {\sin \dfrac{\pi }{3} \times \cos \dfrac{\pi }{4}} \right) - \left( {\cos \dfrac{\pi }{3} \times \sin \dfrac{\pi }{4}} \right)$
Now this is of the form, \[\sin (A - B) = \sin A\cos B - \cos A\sin B\]
Thus we get,
$\left( {\sin \dfrac{\pi }{3} \times \cos \dfrac{\pi }{4}} \right) - \left( {\cos \dfrac{\pi }{3}\times \sin \dfrac{\pi }{4}} \right) = \sin \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right)$
$\sin \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) = \sin \dfrac{{4\pi - 3\pi }}{{12}}$
$\sin \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) = \sin \dfrac{\pi }{{12}}$
${\sin ^{ - 1}}\left( {\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}} \right) = {\sin ^{ - 1}}\sin \dfrac{\pi }{{12}}$
${\sin ^{ - 1}}\left( {\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}} \right) = \dfrac{\pi }{{12}}$
Complete step-by-step answer:
A principal value of a function is the value selected at a point in the domain of a multiple-valued function, chosen so that the function has a single value at the point.The principal value of \[{\sin ^{ - 1}}x\] for \[x > 0\] , is the length of the arc of a unit circle centred at the origin which subtends an angle at the centre whose sine is x. For this reason \[{\sin ^{ - 1}}x\] is also denoted by \[\operatorname{arcsinx} \].
The principal value of \[{\sin ^{ - 1}}x\] branches to,
\[{\sin ^{ - 1}}x \in \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)\].
Hence the principal value of the given function will be between the range\[\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)\] .
Now we have been given the function,
${\sin ^{ - 1}}\left( {\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}} \right)$ for which we need to find the principal value.
Let us take the principal value of ${\sin ^{ - 1}}\left( {\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}} \right)$ as \[\theta\].
Thus, \[{\sin ^{ - 1}}\left( {\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}} \right) = \theta \]
Now we can write it as,
\[\sin \theta = \left( {\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}} \right)\]
Now let us rationalize the above expression by multiplying the numerator and denominator of the expression with \[\sqrt 2 \]. Thus we get,
$\sin \theta = \left( {\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}} \right) \times \dfrac{{\sqrt 2 }}{{\sqrt 2 }}$
$\sin \theta = \left( {\dfrac{{(\sqrt 3 - 1) \times \sqrt 2 }}{{2\sqrt 2 \times \sqrt 2 }}} \right) = \left( {\dfrac{{\sqrt 6 - \sqrt 2 }}{{2 \times 2}}} \right) = \left( {\dfrac{{\sqrt 6 - \sqrt 2 }}{4}} \right)$
$\sin \theta = \dfrac{{\sqrt 6 - \sqrt 2 }}{4}$
We know the basic trigonometric identity,
\[\cos 2\theta = 1 - 2{\sin ^2}\theta \]
Now let us substitute the value of \[{\sin ^2}\theta \] in the above expression.
\[{\sin ^2}\theta = \dfrac{{{{(\sqrt 6 - \sqrt 2 )}^2}}}{{{4^2}}}\]
We know the basic identity and use it to solve the following expression.
\[{(a - b)^2} = {a^2} - 2ab + {b^2}\]
${\sin ^2}\theta = \dfrac{{{{(\sqrt 6 - \sqrt 2 )}^2}}}{{{4^2}}} = \dfrac{{{{(\sqrt 6 )}^2} - 2 \times \sqrt 6 \times \sqrt 2 + {{(\sqrt 2 )}^2}}}{{16}}$
${\sin ^2}\theta = \dfrac{{6 - 2\sqrt {12} + 2}}{{16}} = \dfrac{{8 - 4\sqrt 3 }}{{16}} = 2\left( {\dfrac{{4 - 2\sqrt 3 }}{{16}}} \right) = \left( {\dfrac{{4 - 2\sqrt 3 }}{8}} \right)$
${\sin ^2}\theta = \left( {\dfrac{{4 - 2\sqrt 3 }}{8}} \right)$
Thus we got the required value of \[{\sin ^2}\theta \]. Now let us put this in the equation of \[\cos 2\theta \].
\[\cos 2\theta = 1 - 2 \times \left( {\dfrac{{4 - 2\sqrt 3 }}{8}} \right)\], now let us simplify it.
$\cos 2\theta = 1 - \dfrac{{4 - \sqrt 3 }}{4} = \dfrac{{4 - 4 + 2\sqrt 3 }}{4}$
$\cos 2\theta = \dfrac{{2\sqrt 3 }}{4} = \dfrac{{\sqrt 3 }}{2}$
$\cos 2\theta = \dfrac{{\sqrt 3 }}{2}$
From trigonometric table we know that,\[\cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2}\]
Substituting in above equation we get,
$\cos 2\theta=\cos \dfrac{\pi }{6}$
The general solution of trigonometric function $\cos x = \cos \alpha$ is given as $\cos x=2n\pi \pm\cos\alpha$
Hence the equation becomes,
\[
2\theta = 2n\pi \pm \dfrac{\pi }{6} \\
\theta = n\pi \pm \dfrac{\pi }{{12}} \\
\]
Thus we got the principal value of inverse sine function as \[\dfrac{\pi }{{12}}\],which lies between the range \[\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)\].
Thus the principal value is \[\dfrac{\pi }{{12}}\].
Note: We can also find the principal value of the above expression by using identities of sine function.
For the function, \[{\sin ^{ - 1}}\left( {\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}} \right)\], we can write \[\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\]as,
\[\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} = \left( {\dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }}} \right) - \left( {\dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }}} \right)\]
Now from the trigonometric table we know the value of these functions. Thus the above expression becomes,
$\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} = \left( {\dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }}} \right) - \left( {\dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }}} \right)$
$
= \left( {\sin \dfrac{\pi }{3} \times \cos \dfrac{\pi }{4}} \right) - \left( {\cos \dfrac{\pi }{3} \times \sin \dfrac{\pi }{4}} \right)$
Now this is of the form, \[\sin (A - B) = \sin A\cos B - \cos A\sin B\]
Thus we get,
$\left( {\sin \dfrac{\pi }{3} \times \cos \dfrac{\pi }{4}} \right) - \left( {\cos \dfrac{\pi }{3}\times \sin \dfrac{\pi }{4}} \right) = \sin \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right)$
$\sin \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) = \sin \dfrac{{4\pi - 3\pi }}{{12}}$
$\sin \left( {\dfrac{\pi }{3} - \dfrac{\pi }{4}} \right) = \sin \dfrac{\pi }{{12}}$
${\sin ^{ - 1}}\left( {\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}} \right) = {\sin ^{ - 1}}\sin \dfrac{\pi }{{12}}$
${\sin ^{ - 1}}\left( {\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}} \right) = \dfrac{\pi }{{12}}$
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

