
How do you find the polynomial function whose graph passes through $\left( 2,4 \right),\left( 3,6 \right),\left( 5,10 \right)?$
Answer
543.3k+ views
Hint: We will use second polynomial fitting. Then we will find the corresponding coefficient matrix. Later, we will use the Cramer’s Rule to determine the unknowns.
Complete step by step solution:
We are given with three points, $\left( 2,4 \right),\left( 3,6 \right)$ and $\left( 5,10 \right).$
Therefore, we will use second polynomial fitting like $y=a{{x}^{2}}+bx+c.$
We will get the following three equations:
When we consider the point $\left( 2,4 \right),$ we will get ${{y}_{1}}=ax_{1}^{2}+b{{x}_{1}}+c=a{{\left( 2 \right)}^{2}}+b\left( 2 \right)+c.$
When we consider the point $\left( 3,6 \right),$ we will get ${{y}_{2}}=ax_{2}^{2}+b{{x}_{2}}+c=a{{\left( 3 \right)}^{2}}+b\left( 3 \right)+c.$
When we consider the point $\left( 5,10 \right),$ we will get ${{y}_{3}}=ax_{3}^{2}+b{{x}_{3}}+c=a{{\left( 5 \right)}^{2}}+b\left( 5 \right)+c.$
These equations will give us the following system of equations:
$\begin{align}
& 4a+2b+c=4. \\
& 9a+3b+c=6. \\
& 25a+5b+c=10. \\
\end{align}$
Let us convert this system of equations into matrix form as $AX=B$ where $A=\left[ \begin{align}
& \begin{matrix}
4 & 2 & 1 \\
\end{matrix} \\
& \begin{matrix}
9 & 3 & 1 \\
\end{matrix} \\
& \begin{matrix}
25 & 5 & 1 \\
\end{matrix} \\
\end{align} \right], X=\left[ \begin{matrix}
a \\
b \\
c \\
\end{matrix} \right]$ and $B=\left[ \begin{matrix}
4 \\
6 \\
10 \\
\end{matrix} \right].$
When we solve this using $X={{A}^{-1}}B,$ we will get the values the unknowns $a,b$ and $c.$
Here we are using Cremer’s rule to find the values of the unknowns $a,b$ and $c.$
Let us find the determinant of the matrix $A.$
$\Rightarrow \left| A \right|=\left| \begin{align}
& \begin{matrix}
4 & 2 & 1 \\
\end{matrix} \\
& \begin{matrix}
9 & 3 & 1 \\
\end{matrix} \\
& \begin{matrix}
25 & 5 & 1 \\
\end{matrix} \\
\end{align} \right|=4\left( 3-5 \right)-2\left( 9-25 \right)+1\left( 45-75 \right)=4\times \left( -2 \right)-2\left( -16 \right)+\left( -30 \right)$
$\Rightarrow \left| A \right|=-8+32-30=-8+2=-6.$
Consider the matrix ${{A}_{{{x}_{1}}}}$ which is constructed by replacing the first column of the matrix $A$ with the elements of the column matrix $B.$
So, the matrix ${{A}_{{{x}_{1}}}}$ is given by ${{A}_{{{x}_{1}}}}=\left[ \begin{align}
& \begin{matrix}
4 & 2 & 1 \\
\end{matrix} \\
& \begin{matrix}
6 & 3 & 1 \\
\end{matrix} \\
& \begin{matrix}
10 & 5 & 1 \\
\end{matrix} \\
\end{align} \right].$
We are going to find the determinant of the matrix ${{A}_{{{x}_{1}}}}.$
Therefore, $\left| {{A}_{{{x}_{1}}}} \right|=4\left( 3-5 \right)-2\left( 6-10 \right)+1\left( 30-30 \right)=4\times \left( -2 \right)-2\left( -4 \right)+0=-8+8=0.$
Consider the matrix ${{A}_{{{x}_{2}}}}$ which is constructed by replacing the second column of the matrix $A$ with the elements of the column matrix $B.$
So, the matrix \[{{A}_{{{x}_{2}}}}=\left[ \begin{align}
& \begin{matrix}
4 & 4 & 1 \\
\end{matrix} \\
& \begin{matrix}
9 & 6 & 1 \\
\end{matrix} \\
& \begin{matrix}
25 & 10 & 1 \\
\end{matrix} \\
\end{align} \right].\]
As we have done earlier, we are going to find the determinant of the matrix ${{A}_{y}}.$
So, \[\left| {{A}_{{{x}_{2}}}} \right|=4\left( 6-10 \right)-4\left( 9-25 \right)+1\left( 90-150 \right)=4\left( -4 \right)-4\left( -16 \right)+\left( -60 \right)=-16+64-60=-16+4=-12.\]
Consider the matrix ${{A}_{{{x}_{3}}}}$ which is constructed by replacing the third column of the matrix $A$ with the elements of the column matrix $B.$
Thus, the matrix ${{A}_{{{x}_{3}}=}}\left[ \begin{align}
& \begin{matrix}
4 & 2 & 4 \\
\end{matrix} \\
& \begin{matrix}
9 & 3 & 6 \\
\end{matrix} \\
& \begin{matrix}
25 & 5 & 10 \\
\end{matrix} \\
\end{align} \right].$
The determinant of ${{A}_{{{x}_{3}}}}=4\left( 30-30 \right)-2\left( 90-150 \right)+4\left( 45-75 \right)=0-2\left( -60 \right)+4\left( -30 \right)=120-120=0.$
Now, the values of the unknowns can be obtained as follows:
$a=\dfrac{\left| {{A}_{{{x}_{1}}}} \right|}{\left| A \right|}=\dfrac{0}{-6}=0.$
$b=\dfrac{\left| {{A}_{{{x}_{2}}}} \right|}{\left| A \right|}=\dfrac{-12}{-6}=\dfrac{12}{6}=2.$
$c=\dfrac{\left| {{A}_{{{x}_{3}}}} \right|}{\left| A \right|}=\dfrac{0}{-6}=0.$
Now we will substitute these values in any of the equations in the system of equations.
We will get,
$\begin{align}
& 4\left( 0 \right)+2\left( 2 \right)+0=4. \\
& 9\left( 0 \right)+3\left( 2 \right)+0=6. \\
& 25\left( 0 \right)+5\left( 2 \right)+0=10. \\
\end{align}$
We can see,
$\begin{align}
& {{y}_{1}}=0x_{1}^{2}+2{{x}_{1}}+0=2{{x}_{1}}. \\
& {{y}_{2}}=0x_{2}^{2}+2{{x}_{2}}+0=2{{x}_{2}}. \\
& {{y}_{3}}=0x_{3}^{2}+2{{x}_{3}}+0=2{{x}_{3}}. \\
\end{align}$
Generally, $y=2x.$
Hence the polynomial function whose graph passes through $\left( 2,4 \right),\left( 3,6 \right)$ and $\left( 5,10 \right)$ $y=2x.$
Note: In $\left( 2,4 \right), x=2$ and $y=4.$ That is $y=2\cdot 2=2x.$ In $\left( 3,6 \right), x=3$ and $y=6.$ That is, $y=2\cdot 3=2x.$ Similarly, in $\left( 5,10 \right), x=5$ and $y=10.$ That is, $y=2\cdot 5=2x.$ Therefore the required function is $y=2x.$
The determinant $\left| \begin{align}
& \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
\end{matrix} \\
& \begin{matrix}
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
\end{matrix} \\
& \begin{matrix}
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \\
\end{align} \right|={{a}_{1}}\left( {{b}_{2}}{{c}_{3}}-{{c}_{2}}{{b}_{3}} \right)-{{a}_{2}}\left( {{b}_{1}}{{c}_{3}}-{{c}_{1}}{{b}_{3}} \right)+{{a}_{3}}\left( {{b}_{1}}{{c}_{2}}-{{c}_{1}}{{b}_{2}} \right).$
Complete step by step solution:
We are given with three points, $\left( 2,4 \right),\left( 3,6 \right)$ and $\left( 5,10 \right).$
Therefore, we will use second polynomial fitting like $y=a{{x}^{2}}+bx+c.$
We will get the following three equations:
When we consider the point $\left( 2,4 \right),$ we will get ${{y}_{1}}=ax_{1}^{2}+b{{x}_{1}}+c=a{{\left( 2 \right)}^{2}}+b\left( 2 \right)+c.$
When we consider the point $\left( 3,6 \right),$ we will get ${{y}_{2}}=ax_{2}^{2}+b{{x}_{2}}+c=a{{\left( 3 \right)}^{2}}+b\left( 3 \right)+c.$
When we consider the point $\left( 5,10 \right),$ we will get ${{y}_{3}}=ax_{3}^{2}+b{{x}_{3}}+c=a{{\left( 5 \right)}^{2}}+b\left( 5 \right)+c.$
These equations will give us the following system of equations:
$\begin{align}
& 4a+2b+c=4. \\
& 9a+3b+c=6. \\
& 25a+5b+c=10. \\
\end{align}$
Let us convert this system of equations into matrix form as $AX=B$ where $A=\left[ \begin{align}
& \begin{matrix}
4 & 2 & 1 \\
\end{matrix} \\
& \begin{matrix}
9 & 3 & 1 \\
\end{matrix} \\
& \begin{matrix}
25 & 5 & 1 \\
\end{matrix} \\
\end{align} \right], X=\left[ \begin{matrix}
a \\
b \\
c \\
\end{matrix} \right]$ and $B=\left[ \begin{matrix}
4 \\
6 \\
10 \\
\end{matrix} \right].$
When we solve this using $X={{A}^{-1}}B,$ we will get the values the unknowns $a,b$ and $c.$
Here we are using Cremer’s rule to find the values of the unknowns $a,b$ and $c.$
Let us find the determinant of the matrix $A.$
$\Rightarrow \left| A \right|=\left| \begin{align}
& \begin{matrix}
4 & 2 & 1 \\
\end{matrix} \\
& \begin{matrix}
9 & 3 & 1 \\
\end{matrix} \\
& \begin{matrix}
25 & 5 & 1 \\
\end{matrix} \\
\end{align} \right|=4\left( 3-5 \right)-2\left( 9-25 \right)+1\left( 45-75 \right)=4\times \left( -2 \right)-2\left( -16 \right)+\left( -30 \right)$
$\Rightarrow \left| A \right|=-8+32-30=-8+2=-6.$
Consider the matrix ${{A}_{{{x}_{1}}}}$ which is constructed by replacing the first column of the matrix $A$ with the elements of the column matrix $B.$
So, the matrix ${{A}_{{{x}_{1}}}}$ is given by ${{A}_{{{x}_{1}}}}=\left[ \begin{align}
& \begin{matrix}
4 & 2 & 1 \\
\end{matrix} \\
& \begin{matrix}
6 & 3 & 1 \\
\end{matrix} \\
& \begin{matrix}
10 & 5 & 1 \\
\end{matrix} \\
\end{align} \right].$
We are going to find the determinant of the matrix ${{A}_{{{x}_{1}}}}.$
Therefore, $\left| {{A}_{{{x}_{1}}}} \right|=4\left( 3-5 \right)-2\left( 6-10 \right)+1\left( 30-30 \right)=4\times \left( -2 \right)-2\left( -4 \right)+0=-8+8=0.$
Consider the matrix ${{A}_{{{x}_{2}}}}$ which is constructed by replacing the second column of the matrix $A$ with the elements of the column matrix $B.$
So, the matrix \[{{A}_{{{x}_{2}}}}=\left[ \begin{align}
& \begin{matrix}
4 & 4 & 1 \\
\end{matrix} \\
& \begin{matrix}
9 & 6 & 1 \\
\end{matrix} \\
& \begin{matrix}
25 & 10 & 1 \\
\end{matrix} \\
\end{align} \right].\]
As we have done earlier, we are going to find the determinant of the matrix ${{A}_{y}}.$
So, \[\left| {{A}_{{{x}_{2}}}} \right|=4\left( 6-10 \right)-4\left( 9-25 \right)+1\left( 90-150 \right)=4\left( -4 \right)-4\left( -16 \right)+\left( -60 \right)=-16+64-60=-16+4=-12.\]
Consider the matrix ${{A}_{{{x}_{3}}}}$ which is constructed by replacing the third column of the matrix $A$ with the elements of the column matrix $B.$
Thus, the matrix ${{A}_{{{x}_{3}}=}}\left[ \begin{align}
& \begin{matrix}
4 & 2 & 4 \\
\end{matrix} \\
& \begin{matrix}
9 & 3 & 6 \\
\end{matrix} \\
& \begin{matrix}
25 & 5 & 10 \\
\end{matrix} \\
\end{align} \right].$
The determinant of ${{A}_{{{x}_{3}}}}=4\left( 30-30 \right)-2\left( 90-150 \right)+4\left( 45-75 \right)=0-2\left( -60 \right)+4\left( -30 \right)=120-120=0.$
Now, the values of the unknowns can be obtained as follows:
$a=\dfrac{\left| {{A}_{{{x}_{1}}}} \right|}{\left| A \right|}=\dfrac{0}{-6}=0.$
$b=\dfrac{\left| {{A}_{{{x}_{2}}}} \right|}{\left| A \right|}=\dfrac{-12}{-6}=\dfrac{12}{6}=2.$
$c=\dfrac{\left| {{A}_{{{x}_{3}}}} \right|}{\left| A \right|}=\dfrac{0}{-6}=0.$
Now we will substitute these values in any of the equations in the system of equations.
We will get,
$\begin{align}
& 4\left( 0 \right)+2\left( 2 \right)+0=4. \\
& 9\left( 0 \right)+3\left( 2 \right)+0=6. \\
& 25\left( 0 \right)+5\left( 2 \right)+0=10. \\
\end{align}$
We can see,
$\begin{align}
& {{y}_{1}}=0x_{1}^{2}+2{{x}_{1}}+0=2{{x}_{1}}. \\
& {{y}_{2}}=0x_{2}^{2}+2{{x}_{2}}+0=2{{x}_{2}}. \\
& {{y}_{3}}=0x_{3}^{2}+2{{x}_{3}}+0=2{{x}_{3}}. \\
\end{align}$
Generally, $y=2x.$
Hence the polynomial function whose graph passes through $\left( 2,4 \right),\left( 3,6 \right)$ and $\left( 5,10 \right)$ $y=2x.$
Note: In $\left( 2,4 \right), x=2$ and $y=4.$ That is $y=2\cdot 2=2x.$ In $\left( 3,6 \right), x=3$ and $y=6.$ That is, $y=2\cdot 3=2x.$ Similarly, in $\left( 5,10 \right), x=5$ and $y=10.$ That is, $y=2\cdot 5=2x.$ Therefore the required function is $y=2x.$
The determinant $\left| \begin{align}
& \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
\end{matrix} \\
& \begin{matrix}
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
\end{matrix} \\
& \begin{matrix}
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \\
\end{align} \right|={{a}_{1}}\left( {{b}_{2}}{{c}_{3}}-{{c}_{2}}{{b}_{3}} \right)-{{a}_{2}}\left( {{b}_{1}}{{c}_{3}}-{{c}_{1}}{{b}_{3}} \right)+{{a}_{3}}\left( {{b}_{1}}{{c}_{2}}-{{c}_{1}}{{b}_{2}} \right).$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

