Answer
Verified
424.5k+ views
Hint:
Here we will find the value of the coordinate of the points where the given three lines intersect the given plane. As the given line intersects the plane so the value of the coordinate will satisfy the equation of the plane, so we will substitute the value of the points from the line into the plane and get the value of the variable \[t\]. Then we will substitute the value of the variable back in the equation of line to get the value of the coordinate to get the required answer.
Complete step by step solution:
The three lines given to us are
\[x = - 1 - t\]……\[\left( 1 \right)\]
\[y = 2 + t\]……\[\left( 2 \right)\]
\[z = 1 + t\]…….\[\left( 3 \right)\]
The plane at which the above line intersect is,
\[3x + y + 3z = 1\]
Substituting the value from equation \[\left( 1 \right)\], \[\left( 2 \right)\] and \[\left( 3 \right)\] in above value we get,
\[ \Rightarrow 3\left( { - 1 - t} \right) + \left( {2 + t} \right) + 3\left( {1 + t} \right) = 1\]
\[\begin{array}{l} \Rightarrow - 3 - 3t + 2 + t + 3 + 3t = 1\\ \Rightarrow 2 + t = 1\end{array}\]
Keeping \[t\] term on one side and taking rest to the other we get,
\[\begin{array}{l} \Rightarrow t = 1 - 2\\ \Rightarrow t = - 1\end{array}\]
So, we get the value of \[t\] as -1.
Substituting value of \[t\] in equation \[\left( 1 \right)\], \[\left( 2 \right)\] and \[\left( 3 \right)\], we get
\[x = - 1 - \left( { - 1} \right) = - 1 + 1 = 0\]
$y=2-1=1$
\[z = 1 - 1 = 0\]
So, we get our point as,
\[\left( {x,y,z} \right) = \left( {0,1,0} \right)\]
Note:
A plane is a two-dimensional surface that can extend to infinity on either direction. It can be anything, a line, a circle of even a triangle. Geometry of a plane is all about the shapes that are on a flat surface. When line and plane intersect the result can be either a line or a point or it can be an empty set. When a line intersects a plane all points of the line lie in the plane as well.
Here we will find the value of the coordinate of the points where the given three lines intersect the given plane. As the given line intersects the plane so the value of the coordinate will satisfy the equation of the plane, so we will substitute the value of the points from the line into the plane and get the value of the variable \[t\]. Then we will substitute the value of the variable back in the equation of line to get the value of the coordinate to get the required answer.
Complete step by step solution:
The three lines given to us are
\[x = - 1 - t\]……\[\left( 1 \right)\]
\[y = 2 + t\]……\[\left( 2 \right)\]
\[z = 1 + t\]…….\[\left( 3 \right)\]
The plane at which the above line intersect is,
\[3x + y + 3z = 1\]
Substituting the value from equation \[\left( 1 \right)\], \[\left( 2 \right)\] and \[\left( 3 \right)\] in above value we get,
\[ \Rightarrow 3\left( { - 1 - t} \right) + \left( {2 + t} \right) + 3\left( {1 + t} \right) = 1\]
\[\begin{array}{l} \Rightarrow - 3 - 3t + 2 + t + 3 + 3t = 1\\ \Rightarrow 2 + t = 1\end{array}\]
Keeping \[t\] term on one side and taking rest to the other we get,
\[\begin{array}{l} \Rightarrow t = 1 - 2\\ \Rightarrow t = - 1\end{array}\]
So, we get the value of \[t\] as -1.
Substituting value of \[t\] in equation \[\left( 1 \right)\], \[\left( 2 \right)\] and \[\left( 3 \right)\], we get
\[x = - 1 - \left( { - 1} \right) = - 1 + 1 = 0\]
$y=2-1=1$
\[z = 1 - 1 = 0\]
So, we get our point as,
\[\left( {x,y,z} \right) = \left( {0,1,0} \right)\]
Note:
A plane is a two-dimensional surface that can extend to infinity on either direction. It can be anything, a line, a circle of even a triangle. Geometry of a plane is all about the shapes that are on a flat surface. When line and plane intersect the result can be either a line or a point or it can be an empty set. When a line intersects a plane all points of the line lie in the plane as well.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE