
Find the particular solution of the differential equation
\[\left( {x - y} \right)\dfrac{{dy}}{{dx}} = \left( {x + 2y} \right)\]
given that \[y = 0\] when \[x = 1\]
Answer
586.2k+ views
Hint: First we need to identify the category of the differential equation. If we replace x by \[\lambda x\] and y by \[\lambda y\], we find that the differential equation doesn’t change.
Hence, it is a homogeneous differential equation. We can then use the standard method to solve this differential equation. Finding a particular solution implies that the final solution should be independent of any arbitrary constant.
Complete step-by-step solution:
Given: The differential equation is given as \[\left( {x - y} \right)\dfrac{{dy}}{{dx}} = \left( {x + 2y} \right)\] and \[y = 0\]when \[x = 1\].
We can write the differential equation as:
\[\dfrac{{dy}}{{dx}} = \dfrac{{x + 2y}}{{x - y}} .............\left( i \right)\]
Let us put\[y = \vartheta x .............\left( {ii} \right)\]
Differentiating both sides of (ii) with respect to x, we get
\[
\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {\vartheta x} \right)}}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \vartheta \dfrac{{dx}}{{dx}} + x\dfrac{{d\vartheta }}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \vartheta + x\dfrac{{d\vartheta }}{{dx}} ......\left( {ii} \right) \\
\]
Putting the expression of y and \[\dfrac{{dy}}{{dx}}\] in, we get
\[
\vartheta + x\dfrac{{d\vartheta }}{{dx}} = \dfrac{{x + 2\vartheta x}}{{x - \vartheta x}} \\
\Rightarrow \vartheta + x\dfrac{{d\vartheta }}{{dx}} = \dfrac{{1 + 2\vartheta }}{{1 - \vartheta }} \\
\Rightarrow x\dfrac{{d\vartheta }}{{dx}} = \dfrac{{1 + 2\vartheta }}{{1 - \vartheta }} - \vartheta \\
\Rightarrow x\dfrac{{d\vartheta }}{{dx}} = \dfrac{{1 + 2\vartheta - \vartheta + {\vartheta ^2}}}{{1 - \vartheta }} \\
\]
\[
\Rightarrow x\dfrac{{d\vartheta }}{{dx}} = \dfrac{{{\vartheta ^2} + \vartheta + 1}}{{1 - \vartheta }} \\
\Rightarrow \dfrac{{\left( {1 - \vartheta } \right)d\vartheta }}{{{\vartheta ^2} + \vartheta + 1}} = \dfrac{{dx}}{x} \\
\]
Integrating both sides
\[
\int {\dfrac{{\left( {1 - \vartheta } \right)d\vartheta }}{{{\vartheta ^2} + \vartheta + 1}}} = \int {\dfrac{{dx}}{x}} \\
1 - \vartheta \, = P\dfrac{d}{{d\vartheta }}\left( {{\vartheta ^2} + \vartheta + 1} \right) + Q \\
\Rightarrow - \vartheta + 1 = P\left( {2\vartheta + 1} \right) + Q \\
\Rightarrow - \vartheta + 1 = 2P\vartheta + \left( {P + Q} \right) \\
\]
On comparing both sides, we get
\[
\Rightarrow 2P = - 1 \\
\Rightarrow P = - \dfrac{1}{2} \\
P + Q = 1 \\
\Rightarrow - \dfrac{1}{2} + Q = 1 \\
\Rightarrow Q = \dfrac{3}{2} \\
\therefore 1 - \vartheta = - \dfrac{1}{2}\left( {2\vartheta + 1} \right) + \dfrac{3}{2} \\
\]
Thus,
\[
\int {\dfrac{{ - \dfrac{1}{2}\left( {2\vartheta + 1} \right) + \dfrac{3}{2}}}{{\left( {{\vartheta ^2} + \vartheta + 1} \right)}}} d\vartheta = \int {\dfrac{{dx}}{x}} \\
\Rightarrow - \dfrac{1}{2}\int {\dfrac{{\left( {2\vartheta + 1} \right)d\vartheta }}{{\left( {{\vartheta ^2} + \vartheta + 1} \right)}} + \dfrac{3}{2}\int {\dfrac{{d\vartheta }}{{\left( {{\vartheta ^2} + \vartheta + 1} \right)}}} } = \int {\dfrac{{dx}}{x}} \\
\]
\[
\Rightarrow - \dfrac{1}{2}\ell n\left| {{\vartheta ^2} + \vartheta + 1} \right| + \dfrac{3}{2}\int {\dfrac{{d\vartheta }}{{{{\left( {\vartheta + \dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}}} = \int {\dfrac{{dx}}{x}} } \\
\Rightarrow - \dfrac{1}{2}\ell n\left| {{\vartheta ^2} + \vartheta + 1} \right| + \dfrac{3}{2} \times \dfrac{2}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{\vartheta + \dfrac{1}{2}}}{{\dfrac{{\sqrt 3 }}{2}}}} \right) = \ell n|x| + C \\
\]
\[
\Rightarrow - \dfrac{1}{2}\ell n\left| {{\vartheta ^2} + \vartheta + 1} \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{{2\vartheta + 1}}{{\sqrt 3 }}} \right) = \ell n\left| x \right| + C \\
\because y = \vartheta x \\
\Rightarrow \vartheta = \dfrac{y}{x} \\
\Rightarrow - \dfrac{1}{2}\ell n\left| {\dfrac{{{y^2}}}{{{x^2}}} + \dfrac{y}{x} + 1} \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{{2y + x}}{{\sqrt 3 x}}} \right) = \ell n\left| x \right| + C \\
\]
Now, we need to find the value of C
\[\because y = 0\]when \[x = 1\] , we have
\[
- \dfrac{1}{2}\ell n\left| {0 + 0 + 1} \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right) = \ell n\left| 1 \right| + C \\
\Rightarrow - \dfrac{1}{2}\ell n\left| 1 \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right) = \ell n\left| 1 \right| + C \\
\Rightarrow 0 + \sqrt 3 \left( {\dfrac{\pi }{6}} \right) = 0 + C \\
\Rightarrow C = \dfrac{{\sqrt 3 \pi }}{6} \\
\,\,\,\,\,\therefore V = \dfrac{\pi }{{\sqrt 2 }} \\
\]
Therefore, the particular solution of the given differential equation becomes
\[
= \dfrac{1}{2}\ell n\left| {\dfrac{{{y^2}}}{{{x^2}}} + \dfrac{y}{x} + 1} \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{{2y + x}}{{\sqrt 3 x}}} \right) = \ell n\left| x \right| + \dfrac{\pi }{{\sqrt 2 }} \\
\Rightarrow - \dfrac{1}{2}\ell n\left| {\dfrac{{{y^2} + xy + {x^2}}}{{{x^2}}}} \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{{2y + x}}{{\sqrt 3 x}}} \right) = \ell n\left| x \right| + \dfrac{\pi }{{\sqrt 2 }} \\
\Rightarrow - \dfrac{1}{2}\ell n\left| {{x^2} + {y^2} + xy} \right| + \dfrac{1}{2}\ell n\left| {{x^2}} \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{{2y + x}}{{\sqrt 3 x}}} \right) = \ell n\left| x \right| + \dfrac{\pi }{{\sqrt 2 }} \\
\Rightarrow - \dfrac{1}{2}\ell n\left| {{x^2} + {y^2} + xy} \right| + \dfrac{1}{2}\ell n\left( {{x^2}} \right) + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{{2y + x}}{{\sqrt 3 x}}} \right) = \ell n\left| x \right| + \dfrac{\pi }{{\sqrt 2 }} \\
\Rightarrow - \dfrac{1}{2}\ell n\left| {{x^2} + {y^2} + xy} \right|\ell n\left| x \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{{2y + x}}{{\sqrt 3 x}}} \right) = \ell n\left| x \right| + \dfrac{\pi }{{\sqrt 2 }} \\
\Rightarrow - \dfrac{1}{2}\ell n\left| {{x^2} + {y^2} + xy} \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{{2y + x}}{{\sqrt 3 x}}} \right) = \dfrac{\pi }{{\sqrt 2 }} \\
\]
Hence, the final solution is
\[ \Rightarrow - \dfrac{1}{2}\ell n\left| {{x^2} + {y^2} + xy} \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{{2y + x}}{{\sqrt 3 x}}} \right) = \dfrac{\pi }{{\sqrt 2 }}\]
Note: The students must keep in mind all the formulas of integration along with some standard forms of the differential equation. The problems of integration often require the similar kind of algorithm to be solved. Students are suggested to practice these kinds of questions as much as it is possible.
Hence, it is a homogeneous differential equation. We can then use the standard method to solve this differential equation. Finding a particular solution implies that the final solution should be independent of any arbitrary constant.
Complete step-by-step solution:
Given: The differential equation is given as \[\left( {x - y} \right)\dfrac{{dy}}{{dx}} = \left( {x + 2y} \right)\] and \[y = 0\]when \[x = 1\].
We can write the differential equation as:
\[\dfrac{{dy}}{{dx}} = \dfrac{{x + 2y}}{{x - y}} .............\left( i \right)\]
Let us put\[y = \vartheta x .............\left( {ii} \right)\]
Differentiating both sides of (ii) with respect to x, we get
\[
\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {\vartheta x} \right)}}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \vartheta \dfrac{{dx}}{{dx}} + x\dfrac{{d\vartheta }}{{dx}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \vartheta + x\dfrac{{d\vartheta }}{{dx}} ......\left( {ii} \right) \\
\]
Putting the expression of y and \[\dfrac{{dy}}{{dx}}\] in, we get
\[
\vartheta + x\dfrac{{d\vartheta }}{{dx}} = \dfrac{{x + 2\vartheta x}}{{x - \vartheta x}} \\
\Rightarrow \vartheta + x\dfrac{{d\vartheta }}{{dx}} = \dfrac{{1 + 2\vartheta }}{{1 - \vartheta }} \\
\Rightarrow x\dfrac{{d\vartheta }}{{dx}} = \dfrac{{1 + 2\vartheta }}{{1 - \vartheta }} - \vartheta \\
\Rightarrow x\dfrac{{d\vartheta }}{{dx}} = \dfrac{{1 + 2\vartheta - \vartheta + {\vartheta ^2}}}{{1 - \vartheta }} \\
\]
\[
\Rightarrow x\dfrac{{d\vartheta }}{{dx}} = \dfrac{{{\vartheta ^2} + \vartheta + 1}}{{1 - \vartheta }} \\
\Rightarrow \dfrac{{\left( {1 - \vartheta } \right)d\vartheta }}{{{\vartheta ^2} + \vartheta + 1}} = \dfrac{{dx}}{x} \\
\]
Integrating both sides
\[
\int {\dfrac{{\left( {1 - \vartheta } \right)d\vartheta }}{{{\vartheta ^2} + \vartheta + 1}}} = \int {\dfrac{{dx}}{x}} \\
1 - \vartheta \, = P\dfrac{d}{{d\vartheta }}\left( {{\vartheta ^2} + \vartheta + 1} \right) + Q \\
\Rightarrow - \vartheta + 1 = P\left( {2\vartheta + 1} \right) + Q \\
\Rightarrow - \vartheta + 1 = 2P\vartheta + \left( {P + Q} \right) \\
\]
On comparing both sides, we get
\[
\Rightarrow 2P = - 1 \\
\Rightarrow P = - \dfrac{1}{2} \\
P + Q = 1 \\
\Rightarrow - \dfrac{1}{2} + Q = 1 \\
\Rightarrow Q = \dfrac{3}{2} \\
\therefore 1 - \vartheta = - \dfrac{1}{2}\left( {2\vartheta + 1} \right) + \dfrac{3}{2} \\
\]
Thus,
\[
\int {\dfrac{{ - \dfrac{1}{2}\left( {2\vartheta + 1} \right) + \dfrac{3}{2}}}{{\left( {{\vartheta ^2} + \vartheta + 1} \right)}}} d\vartheta = \int {\dfrac{{dx}}{x}} \\
\Rightarrow - \dfrac{1}{2}\int {\dfrac{{\left( {2\vartheta + 1} \right)d\vartheta }}{{\left( {{\vartheta ^2} + \vartheta + 1} \right)}} + \dfrac{3}{2}\int {\dfrac{{d\vartheta }}{{\left( {{\vartheta ^2} + \vartheta + 1} \right)}}} } = \int {\dfrac{{dx}}{x}} \\
\]
\[
\Rightarrow - \dfrac{1}{2}\ell n\left| {{\vartheta ^2} + \vartheta + 1} \right| + \dfrac{3}{2}\int {\dfrac{{d\vartheta }}{{{{\left( {\vartheta + \dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}}} = \int {\dfrac{{dx}}{x}} } \\
\Rightarrow - \dfrac{1}{2}\ell n\left| {{\vartheta ^2} + \vartheta + 1} \right| + \dfrac{3}{2} \times \dfrac{2}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{\vartheta + \dfrac{1}{2}}}{{\dfrac{{\sqrt 3 }}{2}}}} \right) = \ell n|x| + C \\
\]
\[
\Rightarrow - \dfrac{1}{2}\ell n\left| {{\vartheta ^2} + \vartheta + 1} \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{{2\vartheta + 1}}{{\sqrt 3 }}} \right) = \ell n\left| x \right| + C \\
\because y = \vartheta x \\
\Rightarrow \vartheta = \dfrac{y}{x} \\
\Rightarrow - \dfrac{1}{2}\ell n\left| {\dfrac{{{y^2}}}{{{x^2}}} + \dfrac{y}{x} + 1} \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{{2y + x}}{{\sqrt 3 x}}} \right) = \ell n\left| x \right| + C \\
\]
Now, we need to find the value of C
\[\because y = 0\]when \[x = 1\] , we have
\[
- \dfrac{1}{2}\ell n\left| {0 + 0 + 1} \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right) = \ell n\left| 1 \right| + C \\
\Rightarrow - \dfrac{1}{2}\ell n\left| 1 \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{1}{{\sqrt 3 }}} \right) = \ell n\left| 1 \right| + C \\
\Rightarrow 0 + \sqrt 3 \left( {\dfrac{\pi }{6}} \right) = 0 + C \\
\Rightarrow C = \dfrac{{\sqrt 3 \pi }}{6} \\
\,\,\,\,\,\therefore V = \dfrac{\pi }{{\sqrt 2 }} \\
\]
Therefore, the particular solution of the given differential equation becomes
\[
= \dfrac{1}{2}\ell n\left| {\dfrac{{{y^2}}}{{{x^2}}} + \dfrac{y}{x} + 1} \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{{2y + x}}{{\sqrt 3 x}}} \right) = \ell n\left| x \right| + \dfrac{\pi }{{\sqrt 2 }} \\
\Rightarrow - \dfrac{1}{2}\ell n\left| {\dfrac{{{y^2} + xy + {x^2}}}{{{x^2}}}} \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{{2y + x}}{{\sqrt 3 x}}} \right) = \ell n\left| x \right| + \dfrac{\pi }{{\sqrt 2 }} \\
\Rightarrow - \dfrac{1}{2}\ell n\left| {{x^2} + {y^2} + xy} \right| + \dfrac{1}{2}\ell n\left| {{x^2}} \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{{2y + x}}{{\sqrt 3 x}}} \right) = \ell n\left| x \right| + \dfrac{\pi }{{\sqrt 2 }} \\
\Rightarrow - \dfrac{1}{2}\ell n\left| {{x^2} + {y^2} + xy} \right| + \dfrac{1}{2}\ell n\left( {{x^2}} \right) + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{{2y + x}}{{\sqrt 3 x}}} \right) = \ell n\left| x \right| + \dfrac{\pi }{{\sqrt 2 }} \\
\Rightarrow - \dfrac{1}{2}\ell n\left| {{x^2} + {y^2} + xy} \right|\ell n\left| x \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{{2y + x}}{{\sqrt 3 x}}} \right) = \ell n\left| x \right| + \dfrac{\pi }{{\sqrt 2 }} \\
\Rightarrow - \dfrac{1}{2}\ell n\left| {{x^2} + {y^2} + xy} \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{{2y + x}}{{\sqrt 3 x}}} \right) = \dfrac{\pi }{{\sqrt 2 }} \\
\]
Hence, the final solution is
\[ \Rightarrow - \dfrac{1}{2}\ell n\left| {{x^2} + {y^2} + xy} \right| + \sqrt 3 {\tan ^{ - 1}}\left( {\dfrac{{2y + x}}{{\sqrt 3 x}}} \right) = \dfrac{\pi }{{\sqrt 2 }}\]
Note: The students must keep in mind all the formulas of integration along with some standard forms of the differential equation. The problems of integration often require the similar kind of algorithm to be solved. Students are suggested to practice these kinds of questions as much as it is possible.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

