
Find the minimum number of complete years in which a sum of money put at \[20\% \] compound interest will be more than doubled.
Answer
486.6k+ views
Hint: Assume in n complete years a sum of money (say P) put at \[20\% \] compound interest will be more than doubled. Then with the help of the compound interest formula find the total amount after n years. According to the question, this amount will be twice the principal. Form an equation and solve for the value of n.
Complete step-by-step answer:
If principal=P , rate of compound interest=\[R\% \] per annum, time =n years, then
Amount \[ = P{\left( {1 + \dfrac{R}{{100}}} \right)^n}\]
Now let us assume, in n complete years, a sum of money (say P) put at \[20\% \] compound interest will be more than doubled.
Therefore,
\[
P{\left( {1 + \dfrac{{20}}{{100}}} \right)^n} > 2P \\
{\text{On simplifying we get,}} \\
\Rightarrow {\left( {\dfrac{6}{5}} \right)^n} > 2 \\
{\text{Taking log on both sides,we get}} \\
n\log \left( {\dfrac{6}{5}} \right) > \log 2 \\
{\text{As log}}\left( {\dfrac{6}{5}} \right) = 0.079,{\text{ we get,}} \\
\Rightarrow {\text{n x }}0.079 > 0.301 \\
\Rightarrow {\text{n > 3}}{\text{.81}} \\
\Rightarrow {\text{n}} \sim {\text{4}} \\
\]
Therefore the minimum number of complete years in which a sum of money put at \[20\% \] compound interest will be more than doubled, is 4 years.
Note: Some important formulae to remember:
If principal=P , rate of compound interest=R% per annum, time =n years, then
1.Amount= \[P{\left( {1 + \dfrac{R}{{100}}} \right)^n}\], when interest is compounded annually
2.Amount= \[P{\left( {1 + \dfrac{{\dfrac{R}{2}}}{{100}}} \right)^{2n}}\], when interest is compounded half-yearly
3.Amount= \[P{\left( {1 + \dfrac{{\dfrac{R}{4}}}{{100}}} \right)^{4n}}\], when interest is compounded quarterly
Complete step-by-step answer:
If principal=P , rate of compound interest=\[R\% \] per annum, time =n years, then
Amount \[ = P{\left( {1 + \dfrac{R}{{100}}} \right)^n}\]
Now let us assume, in n complete years, a sum of money (say P) put at \[20\% \] compound interest will be more than doubled.
Therefore,
\[
P{\left( {1 + \dfrac{{20}}{{100}}} \right)^n} > 2P \\
{\text{On simplifying we get,}} \\
\Rightarrow {\left( {\dfrac{6}{5}} \right)^n} > 2 \\
{\text{Taking log on both sides,we get}} \\
n\log \left( {\dfrac{6}{5}} \right) > \log 2 \\
{\text{As log}}\left( {\dfrac{6}{5}} \right) = 0.079,{\text{ we get,}} \\
\Rightarrow {\text{n x }}0.079 > 0.301 \\
\Rightarrow {\text{n > 3}}{\text{.81}} \\
\Rightarrow {\text{n}} \sim {\text{4}} \\
\]
Therefore the minimum number of complete years in which a sum of money put at \[20\% \] compound interest will be more than doubled, is 4 years.
Note: Some important formulae to remember:
If principal=P , rate of compound interest=R% per annum, time =n years, then
1.Amount= \[P{\left( {1 + \dfrac{R}{{100}}} \right)^n}\], when interest is compounded annually
2.Amount= \[P{\left( {1 + \dfrac{{\dfrac{R}{2}}}{{100}}} \right)^{2n}}\], when interest is compounded half-yearly
3.Amount= \[P{\left( {1 + \dfrac{{\dfrac{R}{4}}}{{100}}} \right)^{4n}}\], when interest is compounded quarterly
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Write the following in Roman numerals 25819 class 7 maths CBSE

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

Choose the correct assertive sentence form of the below class 7 english CBSE

Fill in the blanks with appropriate modals a Drivers class 7 english CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

The southernmost point of the Indian mainland is known class 7 social studies CBSE

Write a letter to the editor of the national daily class 7 english CBSE
