
Find the minimum and maximum value of function$f\left( x \right) = {x^2}{e^x}$.
Answer
570.6k+ views
Hint: Equating first order derivative of the given function to zero to get solution, and then substituting values of solution in second derivative of function to discuss point of maxima or minima. Finally substituting values in the given function to get maximum or minimum value corresponding to point of maxima or point of minima.
Formulas used: $\dfrac{{df}}{{dx}} = 0,\,\,\,\,\dfrac{{{d^2}f}}{{d{x^2}}} < 0$ for point of maxima and $\dfrac{{{d^2}f}}{{d{x^2}}} > 0$ for point of minima.
Complete step by step solution:
Given, function is \[f\left( x \right) = {x^2}{e^x}\]
Calculating first derivative of $f\left( x \right)$
$\dfrac{{df}}{{dx}} = {x^2}\dfrac{{d({e^x})}}{{dx}} + {e^x}\dfrac{d}{{dx}}\left( {{x^2}} \right)$
$ \Rightarrow \dfrac{{df}}{{dx}} = {x^2}\left( {{e^x}} \right) + {e^x}\left( {2x} \right)$
$ \Rightarrow \dfrac{{df}}{{dx}} = {e^x}\left( {{x^2} + 2x} \right)$
Now, equating$\dfrac{{df}}{{dx}}$ is equal to zero to get solution of the equation or value of x.
$ \Rightarrow {e^x}\left( {{x^2} + 2x} \right) = 0$
$ \Rightarrow \left( {{x^2} + 2x} \right) = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because \left( {{e^x} \ne 0} \right)$
$
\Rightarrow x\left( {x + 2} \right) = 0 \\
\Rightarrow x = 0\,\,or\,\,x + 2 = 0 \\
\Rightarrow x = 0\,\,\,or\,\,x = - 2 \\
$
Now, calculating $\dfrac{{{d^2}f}}{{d{x^2}}}$ of the given function.
\[\dfrac{{{d^2}f}}{{d{x^2}}} = \dfrac{d}{{dx}}\left( {\dfrac{{df}}{{dx}}} \right)\]
$ \Rightarrow \dfrac{{{d^2}f}}{{d{x^2}}} = \dfrac{d}{{dx}}\left\{ {{e^x}\left( {{x^2} + 2} \right)} \right\}$
$ \Rightarrow \dfrac{{{d^2}f}}{{d{x^2}}} = {e^x}\dfrac{d}{{dx}}\left( {{x^2} + 2x} \right) + \left( {{x^2} + 2x} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right)$
$ \Rightarrow \dfrac{{{d^2}f}}{{d{x^2}}} = {e^x}\left( {2x + 2} \right) + \left( {{x^2} + 2x} \right)\left( {{e^x}} \right)$
$ \Rightarrow \dfrac{{{d^2}f}}{{d{x^2}}} = {e^x}\left( {{x^2} + 4x + 2} \right)$
Substituting values of $x = 0$ and $x = - 2$ obtained in step 3 in $\dfrac{{{d^2}f}}{{d{x^2}}}$ obtained in step 5 to check point of maxima or point of minima.
First substituting $x = 0$ we have,
${\left( {\dfrac{{{d^2}f}}{{d{x^2}}}} \right)_{x = 0}} = {e^{(0)}}\left\{ {{{(0)}^2} + 4(0) + 2} \right\}$
$ \Rightarrow {\left( {\dfrac{{{d^2}f}}{{d{x^2}}}} \right)_{x = 0}} = 2 > 0$
Therefore we can say that point $x = 0$ is a point of minima.
Now, substituting $x = - 2$ in $\dfrac{{{d^2}f}}{{d{x^2}}}$ we have
${\left( {\dfrac{{{d^2}f}}{{d{x^2}}}} \right)_{x = - 2}} = {e^{ - 2}}\left\{ {{{\left( { - 2} \right)}^2} + 4\left( { - 2} \right) + 2} \right\}$
${\left( {\dfrac{{{d^2}f}}{{d{x^2}}}} \right)_{x = - 2}} = \dfrac{1}{{{e^2}}}\left( {4 - 8 + 2} \right) < 0$
Therefore we can say that point $x = - 2$ is a point of maxima.
To calculate corresponding maximum and minimum values of the given function $f\left( x \right)$we put$x = 0$ and $x = - 2$in $f\left( x \right)$ one by one.
Substituting $x = 0$ we have
\[f\left( x \right) = (0){e^{(0)}} = 0\]
Substituting $x = - 2$ we have
$
f\left( x \right) = {( - 2)^2}{e^{( - 2)}} \\
\Rightarrow f(x) = \dfrac{4}{{{e^2}}} \\
$
Therefore, form above we see that minimum value of given function is 0 and maximum value of the given function is$\dfrac{4}{{{e^2}}}$
Note: Maxima and minima of the function can be calculated by using differentiation method.
Formulas used: $\dfrac{{df}}{{dx}} = 0,\,\,\,\,\dfrac{{{d^2}f}}{{d{x^2}}} < 0$ for point of maxima and $\dfrac{{{d^2}f}}{{d{x^2}}} > 0$ for point of minima.
Complete step by step solution:
Given, function is \[f\left( x \right) = {x^2}{e^x}\]
Calculating first derivative of $f\left( x \right)$
$\dfrac{{df}}{{dx}} = {x^2}\dfrac{{d({e^x})}}{{dx}} + {e^x}\dfrac{d}{{dx}}\left( {{x^2}} \right)$
$ \Rightarrow \dfrac{{df}}{{dx}} = {x^2}\left( {{e^x}} \right) + {e^x}\left( {2x} \right)$
$ \Rightarrow \dfrac{{df}}{{dx}} = {e^x}\left( {{x^2} + 2x} \right)$
Now, equating$\dfrac{{df}}{{dx}}$ is equal to zero to get solution of the equation or value of x.
$ \Rightarrow {e^x}\left( {{x^2} + 2x} \right) = 0$
$ \Rightarrow \left( {{x^2} + 2x} \right) = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because \left( {{e^x} \ne 0} \right)$
$
\Rightarrow x\left( {x + 2} \right) = 0 \\
\Rightarrow x = 0\,\,or\,\,x + 2 = 0 \\
\Rightarrow x = 0\,\,\,or\,\,x = - 2 \\
$
Now, calculating $\dfrac{{{d^2}f}}{{d{x^2}}}$ of the given function.
\[\dfrac{{{d^2}f}}{{d{x^2}}} = \dfrac{d}{{dx}}\left( {\dfrac{{df}}{{dx}}} \right)\]
$ \Rightarrow \dfrac{{{d^2}f}}{{d{x^2}}} = \dfrac{d}{{dx}}\left\{ {{e^x}\left( {{x^2} + 2} \right)} \right\}$
$ \Rightarrow \dfrac{{{d^2}f}}{{d{x^2}}} = {e^x}\dfrac{d}{{dx}}\left( {{x^2} + 2x} \right) + \left( {{x^2} + 2x} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right)$
$ \Rightarrow \dfrac{{{d^2}f}}{{d{x^2}}} = {e^x}\left( {2x + 2} \right) + \left( {{x^2} + 2x} \right)\left( {{e^x}} \right)$
$ \Rightarrow \dfrac{{{d^2}f}}{{d{x^2}}} = {e^x}\left( {{x^2} + 4x + 2} \right)$
Substituting values of $x = 0$ and $x = - 2$ obtained in step 3 in $\dfrac{{{d^2}f}}{{d{x^2}}}$ obtained in step 5 to check point of maxima or point of minima.
First substituting $x = 0$ we have,
${\left( {\dfrac{{{d^2}f}}{{d{x^2}}}} \right)_{x = 0}} = {e^{(0)}}\left\{ {{{(0)}^2} + 4(0) + 2} \right\}$
$ \Rightarrow {\left( {\dfrac{{{d^2}f}}{{d{x^2}}}} \right)_{x = 0}} = 2 > 0$
Therefore we can say that point $x = 0$ is a point of minima.
Now, substituting $x = - 2$ in $\dfrac{{{d^2}f}}{{d{x^2}}}$ we have
${\left( {\dfrac{{{d^2}f}}{{d{x^2}}}} \right)_{x = - 2}} = {e^{ - 2}}\left\{ {{{\left( { - 2} \right)}^2} + 4\left( { - 2} \right) + 2} \right\}$
${\left( {\dfrac{{{d^2}f}}{{d{x^2}}}} \right)_{x = - 2}} = \dfrac{1}{{{e^2}}}\left( {4 - 8 + 2} \right) < 0$
Therefore we can say that point $x = - 2$ is a point of maxima.
To calculate corresponding maximum and minimum values of the given function $f\left( x \right)$we put$x = 0$ and $x = - 2$in $f\left( x \right)$ one by one.
Substituting $x = 0$ we have
\[f\left( x \right) = (0){e^{(0)}} = 0\]
Substituting $x = - 2$ we have
$
f\left( x \right) = {( - 2)^2}{e^{( - 2)}} \\
\Rightarrow f(x) = \dfrac{4}{{{e^2}}} \\
$
Therefore, form above we see that minimum value of given function is 0 and maximum value of the given function is$\dfrac{4}{{{e^2}}}$
Note: Maxima and minima of the function can be calculated by using differentiation method.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

