
Find the maximum and minimum values of $ x + \sin 2x $ on $ \left[ {0,2\pi } \right] $
Answer
581.1k+ views
Hint: Consider the given expression as a function and then find the differentiation of that function to get the value of x. And get the values of x within the given range. After getting the values of x, substitute them in the given expression and get its maximum and minimum value.
Complete step-by-step answer:
We are given an expression $ x + \sin 2x $ and we have to find its maximum value and minimum value within the range $ \left[ {0,2\pi } \right] $
$ x + \sin 2x $ is in terms of the variable x.
Let $ x + \sin 2x $ be a function $ f\left( x \right) $
$ f\left( x \right) = x + \sin 2x $
Now we are finding the differentiation of the function $ f\left( x \right) $ with respect to x to get the value of x.
$
\Rightarrow \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {x + \sin 2x} \right) \\
\Rightarrow {f^1}\left( x \right) = \dfrac{d}{{dx}}x + \dfrac{d}{{dx}}\sin 2x \\
\Rightarrow {f^1}\left( x \right) = 1 + 2\cos 2x \\
\left( {\because \dfrac{{dx}}{{dx}} = 1,\dfrac{d}{{dx}}\left( {\sin nx} \right) = n\cos nx} \right) \\
$
Where $ {f^1}\left( x \right) $ is the derivative function of $ f\left( x \right) $
When the value of $ {f^1}\left( x \right) $ is 0 then the value of x will be
$
{f^1}\left( x \right) = 1 + 2\cos 2x = 0 \\
\Rightarrow 1 + 2\cos 2x = 0 \\
\Rightarrow 2\cos 2x = - 1 \\
\Rightarrow \cos 2x = \dfrac{{ - 1}}{2} \\
$
The value of cosine function is $ \dfrac{1}{2} $ only when the angle is 60 degrees or $ \dfrac{\pi }{3} $
$
\Rightarrow \cos 2x = - \cos \dfrac{\pi }{3} \\
\Rightarrow - \cos \dfrac{\pi }{3} = \cos \left( {\pi - \dfrac{\pi }{3}} \right) = \cos \dfrac{{2\pi }}{3} \\
\Rightarrow \cos 2x = \cos \dfrac{{2\pi }}{3} \\
\Rightarrow 2x = 2n\pi \pm \dfrac{{2\pi }}{3},n \in Z \\
\Rightarrow x = n\pi \pm \dfrac{{2\pi }}{3},n \in Z \\
$
We have got the expression to calculate the value of x, and the values of x must be in the range $ \left[ {0,2\pi } \right] $
So the values of x will be $ 0,\dfrac{\pi }{3},\dfrac{{2\pi }}{3},\dfrac{{4\pi }}{3},\dfrac{{5\pi }}{3},2\pi $
Now, substitute the values of x in the function $ f\left( x \right) = x + \sin 2x $ to find the function values.
$
x = 0,f\left( 0 \right) = 0 + \sin 2\left( 0 \right) = 0 \\
x = \dfrac{\pi }{3},f\left( {\dfrac{\pi }{3}} \right) = \dfrac{\pi }{3} + \sin 2\dfrac{\pi }{3} = \dfrac{\pi }{3} + \dfrac{{\sqrt 3 }}{2} \\
x = \dfrac{{2\pi }}{3},f\left( {\dfrac{{2\pi }}{3}} \right) = \dfrac{{2\pi }}{3} + \sin 2\left( {\dfrac{{2\pi }}{3}} \right) = \dfrac{{2\pi }}{3} - \dfrac{{\sqrt 3 }}{2} \\
x = \dfrac{{4\pi }}{3},f\left( {\dfrac{{4\pi }}{3}} \right) = \dfrac{{4\pi }}{3} + \sin 2\left( {\dfrac{{4\pi }}{3}} \right) = \dfrac{{4\pi }}{3} + \dfrac{{\sqrt 3 }}{2} \\
x = \dfrac{{5\pi }}{3},f\left( {\dfrac{{5\pi }}{3}} \right) = \dfrac{{5\pi }}{3} + \sin 2\left( {\dfrac{{5\pi }}{3}} \right) = \dfrac{{5\pi }}{3} - \dfrac{{\sqrt 3 }}{2} \\
x = 2\pi ,f\left( {2\pi } \right) = 2\pi + \sin 2\left( {2\pi } \right) = 2\pi + 0 = 2\pi \\
$
Out of all the values we got of the function $ f\left( x \right) = x + \sin 2x $ , 0 is the minimum value at x is equal to 0 and $ 2\pi $ is the maximum value at x is equal to $ 2\pi $
Note: The differentiation of sine function will be a positive cosine function but the differentiation of a cosine function will be a negative sine function. Be careful with the signs of the functions. The value of a trigonometric function repeats after a full circle or $ 2\pi $ radians.
Complete step-by-step answer:
We are given an expression $ x + \sin 2x $ and we have to find its maximum value and minimum value within the range $ \left[ {0,2\pi } \right] $
$ x + \sin 2x $ is in terms of the variable x.
Let $ x + \sin 2x $ be a function $ f\left( x \right) $
$ f\left( x \right) = x + \sin 2x $
Now we are finding the differentiation of the function $ f\left( x \right) $ with respect to x to get the value of x.
$
\Rightarrow \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = \dfrac{d}{{dx}}\left( {x + \sin 2x} \right) \\
\Rightarrow {f^1}\left( x \right) = \dfrac{d}{{dx}}x + \dfrac{d}{{dx}}\sin 2x \\
\Rightarrow {f^1}\left( x \right) = 1 + 2\cos 2x \\
\left( {\because \dfrac{{dx}}{{dx}} = 1,\dfrac{d}{{dx}}\left( {\sin nx} \right) = n\cos nx} \right) \\
$
Where $ {f^1}\left( x \right) $ is the derivative function of $ f\left( x \right) $
When the value of $ {f^1}\left( x \right) $ is 0 then the value of x will be
$
{f^1}\left( x \right) = 1 + 2\cos 2x = 0 \\
\Rightarrow 1 + 2\cos 2x = 0 \\
\Rightarrow 2\cos 2x = - 1 \\
\Rightarrow \cos 2x = \dfrac{{ - 1}}{2} \\
$
The value of cosine function is $ \dfrac{1}{2} $ only when the angle is 60 degrees or $ \dfrac{\pi }{3} $
$
\Rightarrow \cos 2x = - \cos \dfrac{\pi }{3} \\
\Rightarrow - \cos \dfrac{\pi }{3} = \cos \left( {\pi - \dfrac{\pi }{3}} \right) = \cos \dfrac{{2\pi }}{3} \\
\Rightarrow \cos 2x = \cos \dfrac{{2\pi }}{3} \\
\Rightarrow 2x = 2n\pi \pm \dfrac{{2\pi }}{3},n \in Z \\
\Rightarrow x = n\pi \pm \dfrac{{2\pi }}{3},n \in Z \\
$
We have got the expression to calculate the value of x, and the values of x must be in the range $ \left[ {0,2\pi } \right] $
So the values of x will be $ 0,\dfrac{\pi }{3},\dfrac{{2\pi }}{3},\dfrac{{4\pi }}{3},\dfrac{{5\pi }}{3},2\pi $
Now, substitute the values of x in the function $ f\left( x \right) = x + \sin 2x $ to find the function values.
$
x = 0,f\left( 0 \right) = 0 + \sin 2\left( 0 \right) = 0 \\
x = \dfrac{\pi }{3},f\left( {\dfrac{\pi }{3}} \right) = \dfrac{\pi }{3} + \sin 2\dfrac{\pi }{3} = \dfrac{\pi }{3} + \dfrac{{\sqrt 3 }}{2} \\
x = \dfrac{{2\pi }}{3},f\left( {\dfrac{{2\pi }}{3}} \right) = \dfrac{{2\pi }}{3} + \sin 2\left( {\dfrac{{2\pi }}{3}} \right) = \dfrac{{2\pi }}{3} - \dfrac{{\sqrt 3 }}{2} \\
x = \dfrac{{4\pi }}{3},f\left( {\dfrac{{4\pi }}{3}} \right) = \dfrac{{4\pi }}{3} + \sin 2\left( {\dfrac{{4\pi }}{3}} \right) = \dfrac{{4\pi }}{3} + \dfrac{{\sqrt 3 }}{2} \\
x = \dfrac{{5\pi }}{3},f\left( {\dfrac{{5\pi }}{3}} \right) = \dfrac{{5\pi }}{3} + \sin 2\left( {\dfrac{{5\pi }}{3}} \right) = \dfrac{{5\pi }}{3} - \dfrac{{\sqrt 3 }}{2} \\
x = 2\pi ,f\left( {2\pi } \right) = 2\pi + \sin 2\left( {2\pi } \right) = 2\pi + 0 = 2\pi \\
$
Out of all the values we got of the function $ f\left( x \right) = x + \sin 2x $ , 0 is the minimum value at x is equal to 0 and $ 2\pi $ is the maximum value at x is equal to $ 2\pi $
Note: The differentiation of sine function will be a positive cosine function but the differentiation of a cosine function will be a negative sine function. Be careful with the signs of the functions. The value of a trigonometric function repeats after a full circle or $ 2\pi $ radians.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

