Answer
Verified
455.1k+ views
Hint:The actual mass of any element is represented in the unified atomic mass unit and is denoted by u. The atomic mass unit or unified atomic mass unit is defined as one-twelfth of the actual mass of the carbon – 12 atom.
Formula used:
The atomic mass unit is given by, $1{\text{u}} = \dfrac{1}{{12}} \times {\text{actual mass of }}{{\text{C}}^{12}}{\text{atom}}$
Complete step by step answer.
Step 1: List the mass of the electron in kg and define the atomic mass unit based on the mass of a carbon – 12 atom.
The mass of an electron in kg is $9.10938 \times {10^{ - 31}}{\text{kg}}$ .
The atomic mass unit is given by, $1{\text{u}} = \dfrac{1}{{12}} \times {\text{actual mass of }}{{\text{C}}^{12}}{\text{atom}}$ .
There are 6 protons and 6 neutrons in the carbon – 12 atom.
The molar mass of a carbon – 12 is 12.0 g/mol.
Step 2: Using the Avagadro’s number, find the actual mass of one carbon – 12 atoms.
In one mole the number of atoms present is given by the Avagadro’s number as $6.022 \times {10^{23}}$ .
Therefore the actual mass of carbon – 12 is $\dfrac{{12.0}}{{6.022 \times {{10}^{23}}}} = 1.9927 \times {10^{ - 23}}{\text{g}} = 1.9927 \times {10^{ - 26}}{\text{kg}}$
Step 3: Find the value of one atomic mass unit and then find the atomic mass of the electron by unit conversion.
The actual mass of one carbon – 12 atom is $1.9927 \times {10^{ - 26}}{\text{kg}}$ .
Then $1{\text{u}} = \dfrac{1}{{12}}\left( {1.9927 \times {{10}^{ - 26}}} \right)$ i.e., $1{\text{u}} = 1.6605 \times {10^{ - 27}}{\text{kg}}$ .
Since the mass of the electron in kg is $9.10938 \times {10^{ - 31}}{\text{kg}}$ , a simple unit conversion will provide the mass of the electron in u.
We get the mass of electron in u as $\dfrac{{9.10938 \times {{10}^{ - 31}}}}{{1.6605 \times {{10}^{ - 27}}}} = 0.0005485{\text{u}}$ .
Therefore, the correct option is D.
Note: Alternate methodOne atomic mass unit (u) can also be expressed implicitly as $1{\text{u}} = \dfrac{1}{{{N_A}}}$ where ${N_A} = 6.022 \times {10^{23}}$ is the Avogadro number. It describes the number of atoms present on one mole of a substance.
Then we get, $1{\text{u}} = \dfrac{1}{{6.022 \times {{10}^{23}}}} = 1.6605 \times {10^{ - 24}}{\text{g}}$ or $1{\text{u}} = 1.6605 \times {10^{ - 27}}{\text{kg}}$
Since the mass of the electron in kg is $9.10938 \times {10^{ - 31}}{\text{kg}}$ , a simple unit conversion will provide the mass of the electron in u.
We get, mass of electron in u as $\dfrac{{9.10938 \times {{10}^{ - 31}}}}{{1.6605 \times {{10}^{ - 27}}}} = 0.0005485{\text{u}}$
Therefore, the correct option is D.
Formula used:
The atomic mass unit is given by, $1{\text{u}} = \dfrac{1}{{12}} \times {\text{actual mass of }}{{\text{C}}^{12}}{\text{atom}}$
Complete step by step answer.
Step 1: List the mass of the electron in kg and define the atomic mass unit based on the mass of a carbon – 12 atom.
The mass of an electron in kg is $9.10938 \times {10^{ - 31}}{\text{kg}}$ .
The atomic mass unit is given by, $1{\text{u}} = \dfrac{1}{{12}} \times {\text{actual mass of }}{{\text{C}}^{12}}{\text{atom}}$ .
There are 6 protons and 6 neutrons in the carbon – 12 atom.
The molar mass of a carbon – 12 is 12.0 g/mol.
Step 2: Using the Avagadro’s number, find the actual mass of one carbon – 12 atoms.
In one mole the number of atoms present is given by the Avagadro’s number as $6.022 \times {10^{23}}$ .
Therefore the actual mass of carbon – 12 is $\dfrac{{12.0}}{{6.022 \times {{10}^{23}}}} = 1.9927 \times {10^{ - 23}}{\text{g}} = 1.9927 \times {10^{ - 26}}{\text{kg}}$
Step 3: Find the value of one atomic mass unit and then find the atomic mass of the electron by unit conversion.
The actual mass of one carbon – 12 atom is $1.9927 \times {10^{ - 26}}{\text{kg}}$ .
Then $1{\text{u}} = \dfrac{1}{{12}}\left( {1.9927 \times {{10}^{ - 26}}} \right)$ i.e., $1{\text{u}} = 1.6605 \times {10^{ - 27}}{\text{kg}}$ .
Since the mass of the electron in kg is $9.10938 \times {10^{ - 31}}{\text{kg}}$ , a simple unit conversion will provide the mass of the electron in u.
We get the mass of electron in u as $\dfrac{{9.10938 \times {{10}^{ - 31}}}}{{1.6605 \times {{10}^{ - 27}}}} = 0.0005485{\text{u}}$ .
Therefore, the correct option is D.
Note: Alternate methodOne atomic mass unit (u) can also be expressed implicitly as $1{\text{u}} = \dfrac{1}{{{N_A}}}$ where ${N_A} = 6.022 \times {10^{23}}$ is the Avogadro number. It describes the number of atoms present on one mole of a substance.
Then we get, $1{\text{u}} = \dfrac{1}{{6.022 \times {{10}^{23}}}} = 1.6605 \times {10^{ - 24}}{\text{g}}$ or $1{\text{u}} = 1.6605 \times {10^{ - 27}}{\text{kg}}$
Since the mass of the electron in kg is $9.10938 \times {10^{ - 31}}{\text{kg}}$ , a simple unit conversion will provide the mass of the electron in u.
We get, mass of electron in u as $\dfrac{{9.10938 \times {{10}^{ - 31}}}}{{1.6605 \times {{10}^{ - 27}}}} = 0.0005485{\text{u}}$
Therefore, the correct option is D.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE