
Find the locus of the middle points of chords of the parabola which are of given length \[l\].
Answer
617.7k+ views
Hint: Use distance formula for finding distance between two general points of the parabola.
Complete step-by-step answer:
Consider the above picture. \[A\left( a{{t}^{2}},2at \right)\] and \[B\left( a{{u}^{2}},2au \right)\]are two variable points on the standard parabola \[{{y}^{2}}=4ax\] with parameters \[t\] and \[u\] respectively.
We have been given that $AB$ is constant i.e. equal to \[l\].
We can write distance $AB$ using distance formula which is,
Distance between two points = $\sqrt{{{\left( x1-x2 \right)}^{2}}-{{\left( y1-y2 \right)}^{2}}}$
So,
$l=\sqrt{{{\left( a{{t}^{2}}-a{{u}^{2}} \right)}^{2}}-{{\left( 2at-2au \right)}^{2}}}$
Squaring both sides we get,
${{l}^{2}}={{a}^{2}}\left\{ {{\left( t-u \right)}^{2}}{{\left( t+u \right)}^{2}} \right\}-4{{a}^{2}}{{\left( t-u \right)}^{2}}...(i)$
Now let point \[\left( h,k \right)\] lie on our locus. Since they lie on the locus it is the midpoint of our variable chord $AB$.
Using mid-point formula we can write
Xmid=\[\dfrac{x1+x2}{2}\]
ymid= \[\dfrac{y1+y2}{2}\]
We write,
$h=\left\{ \dfrac{\left( x~coordinate~of~A \right)+\left( x~coordinate~of~B \right)}{2} \right\}$
$k=\left\{ \dfrac{\left( y~coordinate~of~A \right)+\left( y~coordinate~of~B \right)}{2} \right\}$
And,
$h=\left\{ \dfrac{\left( \text{a}{{\text{t}}^{2}} \right)+\left( a{{u}^{2}} \right)}{2} \right\}$
$2h=\left( \text{a}{{\text{t}}^{2}} \right)+\left( a{{u}^{2}} \right)$
$\dfrac{2h}{a}=\left\{ {{\text{t}}^{2}}+{{u}^{2}} \right\}...(ii)$
$k=\left\{ \dfrac{\left( 2at \right)+\left( 2au \right)}{2} \right\}$
$k=\left( at \right)+\left( au \right)$
$\dfrac{k}{a}=\left\{ t+u \right\}...(iii)$
So our next task in finding the locus is eliminating the variables from the above equations.
Squaring equation\[\left( iii \right)\]and subtracting it from \[\left( ii \right)\] i.e. \[{{\left( iii \right)}^{2}}-\left( ii \right)\]
Which gives,
${{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a}={{\left( t+u \right)}^{2}}-\left\{ {{\text{t}}^{2}}+{{u}^{2}} \right\}$
${{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a}=\left( {{t}^{2}}+{{u}^{2}}+2ut \right)-\left\{ {{\text{t}}^{2}}+{{u}^{2}} \right\}$
${{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a}=2ut...(iv)$
Squaring equation\[\left( iii \right)\]and subtracting it from \[2\times \left( iv \right)\] i.e. \[{{\left( iii \right)}^{2}}-2\left( iv \right)\]
Which gives,
${{\left\{ \dfrac{k}{a} \right\}}^{2}}-2\left\{ {{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a} \right\}={{\left( t+u \right)}^{2}}-2\left( 2ut \right)$
${{\left( \dfrac{k}{a} \right)}^{2}}-2{{\left( \dfrac{k}{a} \right)}^{2}}+2\dfrac{2h}{a}=\left( {{t}^{2}}+{{u}^{2}}+2ut \right)-4ut$
$-{{\left( \dfrac{k}{a} \right)}^{2}}+\dfrac{4h}{a}=\left( {{t}^{2}}+{{u}^{2}}-2ut \right)$
$\dfrac{4h}{a}-{{\left( \dfrac{k}{a} \right)}^{2}}={{\left( u-t \right)}^{2}}$
$\sqrt{\dfrac{4h}{a}-{{\left( \dfrac{k}{a} \right)}^{2}}}=u-t...(v)$
Substituting equations \[\left( iii \right)\]and \[\left( v \right)\] in \[\left( i \right)\] we get,
${{l}^{2}}={{a}^{2}}\left\{ \left( \dfrac{4h}{a}-\left( \dfrac{{{k}^{2}}}{{{a}^{2}}} \right) \right)\left( \dfrac{{{k}^{2}}}{{{a}^{2}}} \right) \right\}-4{{a}^{2}}\left( \dfrac{4h}{a}-\left( \dfrac{{{k}^{2}}}{{{a}^{2}}} \right) \right)$
\[{{l}^{2}}=\left\{ \left( \dfrac{4h}{a}-\left( \dfrac{{{k}^{2}}}{{{a}^{2}}} \right) \right){{k}^{2}} \right\}-4\left( 4ah-{{k}^{2}} \right)\]
\[{{l}^{2}}=\left( \dfrac{4h{{k}^{2}}}{a}-\left( \dfrac{{{k}^{4}}}{{{a}^{2}}} \right) \right)-16ah+4{{k}^{2}}\]
${{l}^{2}}=\dfrac{4h{{k}^{2}}}{a}-\dfrac{{{k}^{4}}}{{{a}^{2}}}-16ah+4{{k}^{2}}$
Now since \[\left( h,k \right)\]are general points on our locus we can replace \[h\] by \[x\] and \[k\] by \[y\].
${{l}^{2}}=\dfrac{4x{{y}^{2}}}{a}-\dfrac{{{y}^{4}}}{{{a}^{2}}}-16ax+4{{y}^{2}}$
This is the required locus.
Note: Students have to think carefully while deciding which is the variable before eliminating. In this question students might eliminate \[a\] which will give them the wrong answer. Also they may use their different techniques to eliminate the variable from the equations. Also, if they feel it is redundant to use \[\left( h,k \right)\]first and then replace it as \[\left( x,y \right)\] they may use \[\left( x,y \right)\]from the start as well.
Complete step-by-step answer:
Consider the above picture. \[A\left( a{{t}^{2}},2at \right)\] and \[B\left( a{{u}^{2}},2au \right)\]are two variable points on the standard parabola \[{{y}^{2}}=4ax\] with parameters \[t\] and \[u\] respectively.
We have been given that $AB$ is constant i.e. equal to \[l\].
We can write distance $AB$ using distance formula which is,
Distance between two points = $\sqrt{{{\left( x1-x2 \right)}^{2}}-{{\left( y1-y2 \right)}^{2}}}$
So,
$l=\sqrt{{{\left( a{{t}^{2}}-a{{u}^{2}} \right)}^{2}}-{{\left( 2at-2au \right)}^{2}}}$
Squaring both sides we get,
${{l}^{2}}={{a}^{2}}\left\{ {{\left( t-u \right)}^{2}}{{\left( t+u \right)}^{2}} \right\}-4{{a}^{2}}{{\left( t-u \right)}^{2}}...(i)$
Now let point \[\left( h,k \right)\] lie on our locus. Since they lie on the locus it is the midpoint of our variable chord $AB$.
Using mid-point formula we can write
Xmid=\[\dfrac{x1+x2}{2}\]
ymid= \[\dfrac{y1+y2}{2}\]
We write,
$h=\left\{ \dfrac{\left( x~coordinate~of~A \right)+\left( x~coordinate~of~B \right)}{2} \right\}$
$k=\left\{ \dfrac{\left( y~coordinate~of~A \right)+\left( y~coordinate~of~B \right)}{2} \right\}$
And,
$h=\left\{ \dfrac{\left( \text{a}{{\text{t}}^{2}} \right)+\left( a{{u}^{2}} \right)}{2} \right\}$
$2h=\left( \text{a}{{\text{t}}^{2}} \right)+\left( a{{u}^{2}} \right)$
$\dfrac{2h}{a}=\left\{ {{\text{t}}^{2}}+{{u}^{2}} \right\}...(ii)$
$k=\left\{ \dfrac{\left( 2at \right)+\left( 2au \right)}{2} \right\}$
$k=\left( at \right)+\left( au \right)$
$\dfrac{k}{a}=\left\{ t+u \right\}...(iii)$
So our next task in finding the locus is eliminating the variables from the above equations.
Squaring equation\[\left( iii \right)\]and subtracting it from \[\left( ii \right)\] i.e. \[{{\left( iii \right)}^{2}}-\left( ii \right)\]
Which gives,
${{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a}={{\left( t+u \right)}^{2}}-\left\{ {{\text{t}}^{2}}+{{u}^{2}} \right\}$
${{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a}=\left( {{t}^{2}}+{{u}^{2}}+2ut \right)-\left\{ {{\text{t}}^{2}}+{{u}^{2}} \right\}$
${{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a}=2ut...(iv)$
Squaring equation\[\left( iii \right)\]and subtracting it from \[2\times \left( iv \right)\] i.e. \[{{\left( iii \right)}^{2}}-2\left( iv \right)\]
Which gives,
${{\left\{ \dfrac{k}{a} \right\}}^{2}}-2\left\{ {{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{2h}{a} \right\}={{\left( t+u \right)}^{2}}-2\left( 2ut \right)$
${{\left( \dfrac{k}{a} \right)}^{2}}-2{{\left( \dfrac{k}{a} \right)}^{2}}+2\dfrac{2h}{a}=\left( {{t}^{2}}+{{u}^{2}}+2ut \right)-4ut$
$-{{\left( \dfrac{k}{a} \right)}^{2}}+\dfrac{4h}{a}=\left( {{t}^{2}}+{{u}^{2}}-2ut \right)$
$\dfrac{4h}{a}-{{\left( \dfrac{k}{a} \right)}^{2}}={{\left( u-t \right)}^{2}}$
$\sqrt{\dfrac{4h}{a}-{{\left( \dfrac{k}{a} \right)}^{2}}}=u-t...(v)$
Substituting equations \[\left( iii \right)\]and \[\left( v \right)\] in \[\left( i \right)\] we get,
${{l}^{2}}={{a}^{2}}\left\{ \left( \dfrac{4h}{a}-\left( \dfrac{{{k}^{2}}}{{{a}^{2}}} \right) \right)\left( \dfrac{{{k}^{2}}}{{{a}^{2}}} \right) \right\}-4{{a}^{2}}\left( \dfrac{4h}{a}-\left( \dfrac{{{k}^{2}}}{{{a}^{2}}} \right) \right)$
\[{{l}^{2}}=\left\{ \left( \dfrac{4h}{a}-\left( \dfrac{{{k}^{2}}}{{{a}^{2}}} \right) \right){{k}^{2}} \right\}-4\left( 4ah-{{k}^{2}} \right)\]
\[{{l}^{2}}=\left( \dfrac{4h{{k}^{2}}}{a}-\left( \dfrac{{{k}^{4}}}{{{a}^{2}}} \right) \right)-16ah+4{{k}^{2}}\]
${{l}^{2}}=\dfrac{4h{{k}^{2}}}{a}-\dfrac{{{k}^{4}}}{{{a}^{2}}}-16ah+4{{k}^{2}}$
Now since \[\left( h,k \right)\]are general points on our locus we can replace \[h\] by \[x\] and \[k\] by \[y\].
${{l}^{2}}=\dfrac{4x{{y}^{2}}}{a}-\dfrac{{{y}^{4}}}{{{a}^{2}}}-16ax+4{{y}^{2}}$
This is the required locus.
Note: Students have to think carefully while deciding which is the variable before eliminating. In this question students might eliminate \[a\] which will give them the wrong answer. Also they may use their different techniques to eliminate the variable from the equations. Also, if they feel it is redundant to use \[\left( h,k \right)\]first and then replace it as \[\left( x,y \right)\] they may use \[\left( x,y \right)\]from the start as well.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

