
How do you find the limit of ${\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right)$ as ${\text{x}}$ approaches infinity using L’Hospital’s rule?
Answer
562.8k+ views
Hint: In this question, they asked us to find the limit of ${\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right)$ as ${\text{x}}$ approaching infinity using L’Hospital’s rule.
First we have to rewrite or change the expression in such a way that it becomes easier to use the rule of L’Hospital.
Then we have to differentiate the numerator and the denominator with respect to ${\text{x}}$ and simplify it, and then we will get the right answer.
Formula used: $\dfrac{{d\tan {\text{x}}}}{{dx}} = {\sec ^2}{\text{x}}$
Properties of trigonometric functions used:
$\tan {\text{x = }}\dfrac{{\sin {\text{x}}}}{{\cos {\text{x}}}}$
$\cos \left( 0 \right)$= $1$
Properties of limits used:
$\mathop {\lim }\limits_{x \to \infty } \dfrac{{\sin {\text{x}}}}{{\text{x}}} = 1$
Complete step-by-step solution:
We need to find the limit of ${\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right)$ as ${\text{x}}$ approaching infinity using L’Hospital’s rule.
Using L’Hospital’s rule we need to find$\mathop {\lim }\limits_{x \to \infty } {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right)$
Here$\mathop {\lim }\limits_{x \to \infty } {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right)$ has an indeterminate form $\infty $ .
First, we have to change or rewrite the expression in such a way that it becomes easier to use the rule of L’Hospital
Here we are changing ${\text{x}}$ into $\dfrac{{1{\text{ }}}}{{\dfrac{1}{{\text{x}}}}}$ for this purpose,
And we get,
\[ \Rightarrow {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = \dfrac{{{\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right)}}{{\dfrac{1}{{\text{x}}}}}\]
Now we can apply the rule,
First, differentiating the expression with respect to ${\text{x}}$ , we get
$ \Rightarrow \mathop {\lim }\limits_{x \to \infty } {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = \mathop {\lim }\limits_{x \to \infty } {\text{ }}\dfrac{{{{\sec }^2}\left( {\dfrac{9}{{\text{x}}}} \right)\left( { - \dfrac{9}{{{{\text{x}}^2}}}} \right)}}{{ - \dfrac{1}{{{{\text{x}}^2}}}}}$
$ \Rightarrow \mathop {\lim }\limits_{x \to \infty } {\text{ }}{\sec ^2}\left( {\dfrac{9}{{\text{x}}}} \right)\left( 9 \right)$
$ \Rightarrow {\sec ^2}\left( {\dfrac{9}{\infty }} \right)\left( 9 \right)$
We know that ${\sec ^2}\left( 0 \right) = 1$, thus we get
$ \Rightarrow {\sec ^2}\left( 0 \right)\left( 9 \right)$
\[ \Rightarrow 9\]
Therefore $9$ is the required answer.
Note: In this question we have alternative method as follows
Alternative method:
We can find this without using the rule of L’Hospital’s
We have, ${\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right)$
We have to change the expression using the properties of trigonometric functions,
i.e. $\tan {\text{x = }}\dfrac{{\sin {\text{x}}}}{{\cos {\text{x}}}}$
we get, ${\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = {\text{x}}\dfrac{{\sin \left( {\dfrac{9}{{\text{x}}}} \right)}}{{\cos \left( {\dfrac{9}{{\text{x}}}} \right)}}$
Now changing the ${\text{x}}$ into $\dfrac{{1{\text{ }}}}{{{\text{ }}\dfrac{1}{{\text{x}}}{\text{ }}}}$,
$ \Rightarrow {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = \dfrac{{\sin \left( {\dfrac{9}{{\text{x}}}} \right)}}{{\cos \left( {\dfrac{9}{{\text{x}}}} \right)\left( {\dfrac{1}{{\text{x}}}} \right)}}$
Now we have to multiply and divide $9$, we get
$ \Rightarrow {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = 9 \times \dfrac{{\sin \left( {\dfrac{9}{{\text{x}}}} \right)}}{{\cos \left( {\dfrac{9}{{\text{x}}}} \right)\left( {\dfrac{1}{{\text{x}}}} \right)(9)}}$
$ \Rightarrow {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = 9 \times \dfrac{{\sin \left( {\dfrac{9}{{\text{x}}}} \right)}}{{\left( {\dfrac{9}{{\text{x}}}} \right)}} \times \dfrac{1}{{\cos \left( {\dfrac{9}{{\text{x}}}} \right)}}$
Now applying the properties of limit,
i.e. $\mathop {\lim }\limits_{x \to \infty } \dfrac{{\sin {\text{x}}}}{{\text{x}}} = 1$
So we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to \infty } {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = 9 \times \dfrac{{\sin \left( {\dfrac{9}{{\text{x}}}} \right)}}{{\left( {\dfrac{9}{{\text{x}}}} \right)}} \times \dfrac{1}{{\cos \left( {\dfrac{9}{{\text{x}}}} \right)}}$
$ \Rightarrow \mathop {\lim }\limits_{x \to \infty } {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = 9(1)\dfrac{1}{{\cos \left( {\dfrac{9}{{\text{x}}}} \right)}}$
Apply limit ${\text{x}} \to \infty $ we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to \infty } {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = 9(1)\dfrac{1}{{\cos \left( {\dfrac{9}{\infty }} \right)}}$
That will make$\cos \left( {\dfrac{9}{\infty }} \right)$ to $\cos \left( 0 \right)$
$ \Rightarrow \mathop {\lim }\limits_{x \to \infty } {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = 9(1)\dfrac{1}{{\cos \left( 0 \right)}}$
As we all know that $\cos \left( 0 \right)$= $1$ we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to \infty } {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = 9(1)(1)$
$ \Rightarrow \mathop {\lim }\limits_{x \to \infty } {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = 9$
And we got the required correct answer.
First we have to rewrite or change the expression in such a way that it becomes easier to use the rule of L’Hospital.
Then we have to differentiate the numerator and the denominator with respect to ${\text{x}}$ and simplify it, and then we will get the right answer.
Formula used: $\dfrac{{d\tan {\text{x}}}}{{dx}} = {\sec ^2}{\text{x}}$
Properties of trigonometric functions used:
$\tan {\text{x = }}\dfrac{{\sin {\text{x}}}}{{\cos {\text{x}}}}$
$\cos \left( 0 \right)$= $1$
Properties of limits used:
$\mathop {\lim }\limits_{x \to \infty } \dfrac{{\sin {\text{x}}}}{{\text{x}}} = 1$
Complete step-by-step solution:
We need to find the limit of ${\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right)$ as ${\text{x}}$ approaching infinity using L’Hospital’s rule.
Using L’Hospital’s rule we need to find$\mathop {\lim }\limits_{x \to \infty } {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right)$
Here$\mathop {\lim }\limits_{x \to \infty } {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right)$ has an indeterminate form $\infty $ .
First, we have to change or rewrite the expression in such a way that it becomes easier to use the rule of L’Hospital
Here we are changing ${\text{x}}$ into $\dfrac{{1{\text{ }}}}{{\dfrac{1}{{\text{x}}}}}$ for this purpose,
And we get,
\[ \Rightarrow {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = \dfrac{{{\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right)}}{{\dfrac{1}{{\text{x}}}}}\]
Now we can apply the rule,
First, differentiating the expression with respect to ${\text{x}}$ , we get
$ \Rightarrow \mathop {\lim }\limits_{x \to \infty } {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = \mathop {\lim }\limits_{x \to \infty } {\text{ }}\dfrac{{{{\sec }^2}\left( {\dfrac{9}{{\text{x}}}} \right)\left( { - \dfrac{9}{{{{\text{x}}^2}}}} \right)}}{{ - \dfrac{1}{{{{\text{x}}^2}}}}}$
$ \Rightarrow \mathop {\lim }\limits_{x \to \infty } {\text{ }}{\sec ^2}\left( {\dfrac{9}{{\text{x}}}} \right)\left( 9 \right)$
$ \Rightarrow {\sec ^2}\left( {\dfrac{9}{\infty }} \right)\left( 9 \right)$
We know that ${\sec ^2}\left( 0 \right) = 1$, thus we get
$ \Rightarrow {\sec ^2}\left( 0 \right)\left( 9 \right)$
\[ \Rightarrow 9\]
Therefore $9$ is the required answer.
Note: In this question we have alternative method as follows
Alternative method:
We can find this without using the rule of L’Hospital’s
We have, ${\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right)$
We have to change the expression using the properties of trigonometric functions,
i.e. $\tan {\text{x = }}\dfrac{{\sin {\text{x}}}}{{\cos {\text{x}}}}$
we get, ${\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = {\text{x}}\dfrac{{\sin \left( {\dfrac{9}{{\text{x}}}} \right)}}{{\cos \left( {\dfrac{9}{{\text{x}}}} \right)}}$
Now changing the ${\text{x}}$ into $\dfrac{{1{\text{ }}}}{{{\text{ }}\dfrac{1}{{\text{x}}}{\text{ }}}}$,
$ \Rightarrow {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = \dfrac{{\sin \left( {\dfrac{9}{{\text{x}}}} \right)}}{{\cos \left( {\dfrac{9}{{\text{x}}}} \right)\left( {\dfrac{1}{{\text{x}}}} \right)}}$
Now we have to multiply and divide $9$, we get
$ \Rightarrow {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = 9 \times \dfrac{{\sin \left( {\dfrac{9}{{\text{x}}}} \right)}}{{\cos \left( {\dfrac{9}{{\text{x}}}} \right)\left( {\dfrac{1}{{\text{x}}}} \right)(9)}}$
$ \Rightarrow {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = 9 \times \dfrac{{\sin \left( {\dfrac{9}{{\text{x}}}} \right)}}{{\left( {\dfrac{9}{{\text{x}}}} \right)}} \times \dfrac{1}{{\cos \left( {\dfrac{9}{{\text{x}}}} \right)}}$
Now applying the properties of limit,
i.e. $\mathop {\lim }\limits_{x \to \infty } \dfrac{{\sin {\text{x}}}}{{\text{x}}} = 1$
So we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to \infty } {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = 9 \times \dfrac{{\sin \left( {\dfrac{9}{{\text{x}}}} \right)}}{{\left( {\dfrac{9}{{\text{x}}}} \right)}} \times \dfrac{1}{{\cos \left( {\dfrac{9}{{\text{x}}}} \right)}}$
$ \Rightarrow \mathop {\lim }\limits_{x \to \infty } {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = 9(1)\dfrac{1}{{\cos \left( {\dfrac{9}{{\text{x}}}} \right)}}$
Apply limit ${\text{x}} \to \infty $ we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to \infty } {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = 9(1)\dfrac{1}{{\cos \left( {\dfrac{9}{\infty }} \right)}}$
That will make$\cos \left( {\dfrac{9}{\infty }} \right)$ to $\cos \left( 0 \right)$
$ \Rightarrow \mathop {\lim }\limits_{x \to \infty } {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = 9(1)\dfrac{1}{{\cos \left( 0 \right)}}$
As we all know that $\cos \left( 0 \right)$= $1$ we get,
$ \Rightarrow \mathop {\lim }\limits_{x \to \infty } {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = 9(1)(1)$
$ \Rightarrow \mathop {\lim }\limits_{x \to \infty } {\text{x tan}}\left( {\dfrac{9}{{\text{x}}}} \right) = 9$
And we got the required correct answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

