
Find the LCM of $ {{\text{m}}^{2}}-9m-22 $ , $ {{m}^{2}}-8m-33 $ , $ {{m}^{2}}+5m+6 $ .
Answer
593.1k+ views
Hint: In order to solve this problem, we have to factorize all three terms. We need to factorize the terms such that it is in the form of the product of two terms. Then while calculating the LCM we need all the terms together but we have to take the repeating terms only once.
Complete step-by-step answer:
We need to understand what we mean by LCM.
LCM of numbers is the smallest positive number that is multiple of two or more numbers.
Now we need to find the LCM of three numbers, which are $ {{\text{m}}^{2}}-9m-22 $ , $ {{m}^{2}}-8m-33 $ , $ {{m}^{2}}+5m+6 $ .
We need to factorize all the terms.
Let's start with the first term $ {{\text{m}}^{2}}-9m-22 $ .
$ \begin{align}
& {{\text{m}}^{2}}-9m-22={{\text{m}}^{2}}-11m+2m-22 \\
& =m\left( m-11 \right)+2\left( m-11 \right)
\end{align} $
Taking $ \left( m-11 \right) $ common we get,
$ {{\text{m}}^{2}}-9m-22=\left( m+2 \right)\left( m-11 \right)....................(i) $
Now, let's factorize the second number $ {{m}^{2}}-8m-33 $ .
$ \begin{align}
& {{\text{m}}^{2}}-8m-33={{\text{m}}^{2}}-11m+3m-33 \\
& =m\left( m-11 \right)+3\left( m-11 \right)
\end{align} $
Taking $ \left( m-11 \right) $ common we get,
$ {{\text{m}}^{2}}-8m-33=\left( m+3 \right)\left( m-11 \right)....................(ii) $
Now, let's factorize the third number $ {{m}^{2}}+5m+6 $ .
$ \begin{align}
& {{\text{m}}^{2}}+5m+6={{\text{m}}^{2}}+2m+3m+6 \\
& =m\left( m+2 \right)+3\left( m+2 \right)
\end{align} $
Taking $ \left( m+2 \right) $ common we get,
$ {{\text{m}}^{2}}+5m+6=\left( m+2 \right)\left( m+3 \right)....................(ii) $
Now, to calculate LCM we need to multiply all the values at least once.
By doing that we get,
$ L.C.M.=\left( m+2 \right)\left( m+3 \right)\left( m-11 \right) $
Hence, the L.C.M of these three terms is $ \left( m+2 \right)\left( m+3 \right)\left( m-11 \right) $ .
Note: While factoring the easier way to do this is to find such a combination the sum of coefficients gives the linear term in x and the product of the same gives the constant term. We can show this by an example. For this, $ {{\text{m}}^{2}}-8m-33={{\text{m}}^{2}}-11m+3m-33 $ , the coefficients of linear terms selected are -11 and +3. the sum of these terms gives -11 + 3 = -8, which is the linear term and -11 x 3 = 33, which is the constant term of the quadratic equation.
Complete step-by-step answer:
We need to understand what we mean by LCM.
LCM of numbers is the smallest positive number that is multiple of two or more numbers.
Now we need to find the LCM of three numbers, which are $ {{\text{m}}^{2}}-9m-22 $ , $ {{m}^{2}}-8m-33 $ , $ {{m}^{2}}+5m+6 $ .
We need to factorize all the terms.
Let's start with the first term $ {{\text{m}}^{2}}-9m-22 $ .
$ \begin{align}
& {{\text{m}}^{2}}-9m-22={{\text{m}}^{2}}-11m+2m-22 \\
& =m\left( m-11 \right)+2\left( m-11 \right)
\end{align} $
Taking $ \left( m-11 \right) $ common we get,
$ {{\text{m}}^{2}}-9m-22=\left( m+2 \right)\left( m-11 \right)....................(i) $
Now, let's factorize the second number $ {{m}^{2}}-8m-33 $ .
$ \begin{align}
& {{\text{m}}^{2}}-8m-33={{\text{m}}^{2}}-11m+3m-33 \\
& =m\left( m-11 \right)+3\left( m-11 \right)
\end{align} $
Taking $ \left( m-11 \right) $ common we get,
$ {{\text{m}}^{2}}-8m-33=\left( m+3 \right)\left( m-11 \right)....................(ii) $
Now, let's factorize the third number $ {{m}^{2}}+5m+6 $ .
$ \begin{align}
& {{\text{m}}^{2}}+5m+6={{\text{m}}^{2}}+2m+3m+6 \\
& =m\left( m+2 \right)+3\left( m+2 \right)
\end{align} $
Taking $ \left( m+2 \right) $ common we get,
$ {{\text{m}}^{2}}+5m+6=\left( m+2 \right)\left( m+3 \right)....................(ii) $
Now, to calculate LCM we need to multiply all the values at least once.
By doing that we get,
$ L.C.M.=\left( m+2 \right)\left( m+3 \right)\left( m-11 \right) $
Hence, the L.C.M of these three terms is $ \left( m+2 \right)\left( m+3 \right)\left( m-11 \right) $ .
Note: While factoring the easier way to do this is to find such a combination the sum of coefficients gives the linear term in x and the product of the same gives the constant term. We can show this by an example. For this, $ {{\text{m}}^{2}}-8m-33={{\text{m}}^{2}}-11m+3m-33 $ , the coefficients of linear terms selected are -11 and +3. the sum of these terms gives -11 + 3 = -8, which is the linear term and -11 x 3 = 33, which is the constant term of the quadratic equation.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science

