Answer
Verified
430.2k+ views
Hint: In this question, we will first find the determinant of the matrix to check if its inverse exists. If the determinant is non-zero, only then will we proceed further. After that, we will use elementary row transformations to find the inverse of the matrix. We will use various operations step by step to reach our answer.
Complete step-by-step solution
We are given the matrix $A=\left[ \begin{matrix}
1 & 2 & 1 \\
-1 & 0 & 2 \\
2 & 1 & -3 \\
\end{matrix} \right]$ . Let us find the determinant of the matrix.
$\begin{align}
& \left| A \right|=1\left( 0-2 \right)-2\left( 3-4 \right)+1\left( -1-0 \right) \\
& =-2+2-1 \\
& =-1\ne 0 \\
\end{align}$
Hence, the inverse of the $A$ matrix exists.
Now as we know $A{{A}^{-1}}=I$, so let us put the value of $A$ and $I$ , where $I$is $3\times 3$ identity matrix.
$\left[ \begin{matrix}
1 & 2 & 1 \\
-1 & 0 & 2 \\
2 & 1 & -3 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Now we apply various row transformations to make $A$ as $I$ and hence find our answer.
${{R}_{1}}$ will represent row $1$.
${{R}_{2}}$ will represent row $2$.
${{R}_{3}}$ will represent row $3$.
$\left[ \begin{matrix}
1 & 2 & 1 \\
-1 & 0 & 2 \\
2 & 1 & -3 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Operating of ${{R}_{2}}$and ${{R}_{3}}$ simultaneously, using operations ${{R}_{2}}\to {{R}_{2}}+{{R}_{1}}$ and ${{R}_{3}}\to {{R}_{3}}-2{{R}_{1}}$, we get –
$\left[ \begin{matrix}
1 & 2 & 1 \\
0 & 2 & 3 \\
0 & -3 & -5 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1 \\
\end{matrix} \right]$
Operating on ${{R}_{3}}$ using operations, \[{{R}_{3}}\to {{R}_{3}}+\dfrac{3}{2}{{R}_{2}}\], we get –
\[\left[ \begin{matrix}
1 & 2 & 1 \\
0 & 2 & 3 \\
0 & 0 & -\dfrac{1}{2} \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
-\dfrac{1}{2} & \dfrac{3}{2} & 1 \\
\end{matrix} \right]\]
Again operating on ${{R}_{3}}$ using operations, \[{{R}_{3}}\to \dfrac{{{R}_{3}}}{-\dfrac{1}{2}}\], we get –
\[\left[ \begin{matrix}
1 & 2 & 1 \\
0 & 2 & 3 \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Now operating on ${{R}_{1}}$ using operations, \[{{R}_{3}}\to {{R}_{1}}-{{R}_{2}}\], we get –
\[\left[ \begin{matrix}
1 & 0 & -2 \\
0 & 2 & 3 \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
0 & -1 & 0 \\
1 & 1 & 0 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Operating on ${{R}_{1}}$ using operations, \[{{R}_{3}}\to {{R}_{1}}+2{{R}_{3}}\], we get –
\[\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 2 & 3 \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
1 & 1 & 0 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Operating on ${{R}_{2}}$ using operations, \[{{R}_{2}}\to \dfrac{{{R}_{2}}}{2}\], we get –
\[\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & \dfrac{3}{2} \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
\dfrac{1}{2} & \dfrac{1}{2} & 0 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
At last operating on ${{R}_{2}}$ using operations, \[{{R}_{2}}\to {{R}_{2}}-\dfrac{3}{2}{{R}_{3}}\], we get –
\[\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
-1 & 5 & 3 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Hence, we have got \[I{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
-1 & 5 & 3 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Since,\[IA=AI=A\], therefore, \[{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
-1 & 5 & 3 \\
1 & -3 & -2 \\
\end{matrix} \right]\], which is our required answer.
Note: Students should know that while using elementary transformations, if we are using row transformation, then we have to use rows only. We cannot use column transformation in between. Also, we are not allowed to alter any row, for example, we cannot write ${{R}_{2}}\to {{R}_{1}}+{{R}_{3}}$. Also, the row which is to be transformed should come first in the equation, meaning we cannot write ${{R}_{2}}\to {{R}_{1}}-{{R}_{2}}$. We can only write ${{R}_{2}}\to {{R}_{2}}-{{R}_{1}}$.
Complete step-by-step solution
We are given the matrix $A=\left[ \begin{matrix}
1 & 2 & 1 \\
-1 & 0 & 2 \\
2 & 1 & -3 \\
\end{matrix} \right]$ . Let us find the determinant of the matrix.
$\begin{align}
& \left| A \right|=1\left( 0-2 \right)-2\left( 3-4 \right)+1\left( -1-0 \right) \\
& =-2+2-1 \\
& =-1\ne 0 \\
\end{align}$
Hence, the inverse of the $A$ matrix exists.
Now as we know $A{{A}^{-1}}=I$, so let us put the value of $A$ and $I$ , where $I$is $3\times 3$ identity matrix.
$\left[ \begin{matrix}
1 & 2 & 1 \\
-1 & 0 & 2 \\
2 & 1 & -3 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Now we apply various row transformations to make $A$ as $I$ and hence find our answer.
${{R}_{1}}$ will represent row $1$.
${{R}_{2}}$ will represent row $2$.
${{R}_{3}}$ will represent row $3$.
$\left[ \begin{matrix}
1 & 2 & 1 \\
-1 & 0 & 2 \\
2 & 1 & -3 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Operating of ${{R}_{2}}$and ${{R}_{3}}$ simultaneously, using operations ${{R}_{2}}\to {{R}_{2}}+{{R}_{1}}$ and ${{R}_{3}}\to {{R}_{3}}-2{{R}_{1}}$, we get –
$\left[ \begin{matrix}
1 & 2 & 1 \\
0 & 2 & 3 \\
0 & -3 & -5 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1 \\
\end{matrix} \right]$
Operating on ${{R}_{3}}$ using operations, \[{{R}_{3}}\to {{R}_{3}}+\dfrac{3}{2}{{R}_{2}}\], we get –
\[\left[ \begin{matrix}
1 & 2 & 1 \\
0 & 2 & 3 \\
0 & 0 & -\dfrac{1}{2} \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
-\dfrac{1}{2} & \dfrac{3}{2} & 1 \\
\end{matrix} \right]\]
Again operating on ${{R}_{3}}$ using operations, \[{{R}_{3}}\to \dfrac{{{R}_{3}}}{-\dfrac{1}{2}}\], we get –
\[\left[ \begin{matrix}
1 & 2 & 1 \\
0 & 2 & 3 \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Now operating on ${{R}_{1}}$ using operations, \[{{R}_{3}}\to {{R}_{1}}-{{R}_{2}}\], we get –
\[\left[ \begin{matrix}
1 & 0 & -2 \\
0 & 2 & 3 \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
0 & -1 & 0 \\
1 & 1 & 0 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Operating on ${{R}_{1}}$ using operations, \[{{R}_{3}}\to {{R}_{1}}+2{{R}_{3}}\], we get –
\[\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 2 & 3 \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
1 & 1 & 0 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Operating on ${{R}_{2}}$ using operations, \[{{R}_{2}}\to \dfrac{{{R}_{2}}}{2}\], we get –
\[\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & \dfrac{3}{2} \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
\dfrac{1}{2} & \dfrac{1}{2} & 0 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
At last operating on ${{R}_{2}}$ using operations, \[{{R}_{2}}\to {{R}_{2}}-\dfrac{3}{2}{{R}_{3}}\], we get –
\[\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
-1 & 5 & 3 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Hence, we have got \[I{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
-1 & 5 & 3 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Since,\[IA=AI=A\], therefore, \[{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
-1 & 5 & 3 \\
1 & -3 & -2 \\
\end{matrix} \right]\], which is our required answer.
Note: Students should know that while using elementary transformations, if we are using row transformation, then we have to use rows only. We cannot use column transformation in between. Also, we are not allowed to alter any row, for example, we cannot write ${{R}_{2}}\to {{R}_{1}}+{{R}_{3}}$. Also, the row which is to be transformed should come first in the equation, meaning we cannot write ${{R}_{2}}\to {{R}_{1}}-{{R}_{2}}$. We can only write ${{R}_{2}}\to {{R}_{2}}-{{R}_{1}}$.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Difference Between Plant Cell and Animal Cell