
How do find the inverse of \[A = ((1,1,2)\,(2,2,2)\,(2,1,1))\] ?
Answer
546.9k+ views
Hint: Here the question is of matrix and we have to find the inverse of the given matrix. To find the inverse of a matrix we have two different methods, one is by using row reduced echelon form and other one by using determinant and cofactors of a matrix.Hence, we can determine the required solution.
Complete step by step solution:
The inverse of a matrix A is a matrix that, when multiplied by A results in the identity. The notation for this inverse matrix is \[{A^{ - 1}}\]. Now consider the matrix.
\[A = \left[ {\begin{array}{*{20}{c}}
1&1&2 \\
2&2&2 \\
2&1&1
\end{array}} \right]\]
We find the inverse of a matrix, to find the inverse of the above matrix we use the row reduced echelon form. As we know that \[A = IA\], where \[I\] is the identity matrix of order 3 cross 3.
The matrix is written as
\[\left[ {\begin{array}{*{20}{c}}
1&1&2 \\
2&2&2 \\
2&1&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]A\]
Now we have to convert the LHS matrix into an identity matrix, for the conversion we use row reduced echelon form and apply row transformation to the matrix.
Now apply the row transformation \[{R_2} \to {R_2} \leftrightarrow {R_3}\]
\[\left[ {\begin{array}{*{20}{c}}
1&1&2 \\
2&1&1 \\
2&2&2
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&0&1 \\
0&1&0
\end{array}} \right]A\]
Now apply the row transformation \[{R_2} \to {R_2} - {R_1}\]
\[\left[ {\begin{array}{*{20}{c}}
1&1&2 \\
1&0&{ - 1} \\
2&2&2
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
{ - 1}&0&1 \\
0&1&0
\end{array}} \right]A\]
Now apply the row transformation \[{R_3} \to \dfrac{{{R_3}}}{2}\]
\[\left[ {\begin{array}{*{20}{c}}
1&1&2 \\
1&0&{ - 1} \\
1&1&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
{ - 1}&0&1 \\
0&{\dfrac{1}{2}}&0
\end{array}} \right]A\]
Now apply the row transformation \[{R_3} \to {R_3} - {R_1}\]
\[\left[ {\begin{array}{*{20}{c}}
1&1&2 \\
1&0&{ - 1} \\
0&0&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
{ - 1}&0&1 \\
{ - 1}&{\dfrac{1}{2}}&0
\end{array}} \right]A\]
Now apply the row transformation \[{R_2} \to {R_2} - {R_3}\]
\[\left[ {\begin{array}{*{20}{c}}
1&1&2 \\
1&0&0 \\
0&0&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&{ - \dfrac{1}{2}}&1 \\
{ - 1}&{\dfrac{1}{2}}&0
\end{array}} \right]A\]
Now apply the row transformation \[{R_2} \to {R_2} \leftrightarrow {R_1}\]
\[\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
1&1&2 \\
0&0&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - \dfrac{1}{2}}&1 \\
1&0&0 \\
{ - 1}&{\dfrac{1}{2}}&0
\end{array}} \right]A\]
Now apply the row transformation \[{R_2} \to {R_2} - {R_1}\]
\[\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&2 \\
0&0&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - \dfrac{1}{2}}&1 \\
1&{\dfrac{1}{2}}&1 \\
{ - 1}&{\dfrac{1}{2}}&0
\end{array}} \right]A\]
Now apply the row transformation \[{R_2} \to {R_2} + 2{R_3}\]
\[\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - \dfrac{1}{2}}&1 \\
{ - 1}&{\dfrac{3}{2}}&1 \\
{ - 1}&{\dfrac{1}{2}}&0
\end{array}} \right]A\]
Now apply the row transformation \[{R_3} \to {R_3} \times - 1\]
\[\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - \dfrac{1}{2}}&1 \\
{ - 1}&{\dfrac{3}{2}}&1 \\
1&{ - \dfrac{1}{2}}&0
\end{array}} \right]A\]
Hence we have obtained \[I = {A^{ - 1}}A\]
Therefore the inverse of \[A = \left[ {\begin{array}{*{20}{c}}
1&1&2 \\
2&2&2 \\
2&1&1
\end{array}} \right]\] is \[{A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
0&{ - \dfrac{1}{2}}&1 \\
{ - 1}&{\dfrac{3}{2}}&1 \\
1&{ - \dfrac{1}{2}}&0
\end{array}} \right]\]
Note: When we use row reduced echelon form either we must use row transformation or column transformation. We can’t use both the transformation at a time to the matrix. While using transformation we must take care of signs and sometimes we alter the rows for easier simplification.
Complete step by step solution:
The inverse of a matrix A is a matrix that, when multiplied by A results in the identity. The notation for this inverse matrix is \[{A^{ - 1}}\]. Now consider the matrix.
\[A = \left[ {\begin{array}{*{20}{c}}
1&1&2 \\
2&2&2 \\
2&1&1
\end{array}} \right]\]
We find the inverse of a matrix, to find the inverse of the above matrix we use the row reduced echelon form. As we know that \[A = IA\], where \[I\] is the identity matrix of order 3 cross 3.
The matrix is written as
\[\left[ {\begin{array}{*{20}{c}}
1&1&2 \\
2&2&2 \\
2&1&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]A\]
Now we have to convert the LHS matrix into an identity matrix, for the conversion we use row reduced echelon form and apply row transformation to the matrix.
Now apply the row transformation \[{R_2} \to {R_2} \leftrightarrow {R_3}\]
\[\left[ {\begin{array}{*{20}{c}}
1&1&2 \\
2&1&1 \\
2&2&2
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&0&1 \\
0&1&0
\end{array}} \right]A\]
Now apply the row transformation \[{R_2} \to {R_2} - {R_1}\]
\[\left[ {\begin{array}{*{20}{c}}
1&1&2 \\
1&0&{ - 1} \\
2&2&2
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
{ - 1}&0&1 \\
0&1&0
\end{array}} \right]A\]
Now apply the row transformation \[{R_3} \to \dfrac{{{R_3}}}{2}\]
\[\left[ {\begin{array}{*{20}{c}}
1&1&2 \\
1&0&{ - 1} \\
1&1&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
{ - 1}&0&1 \\
0&{\dfrac{1}{2}}&0
\end{array}} \right]A\]
Now apply the row transformation \[{R_3} \to {R_3} - {R_1}\]
\[\left[ {\begin{array}{*{20}{c}}
1&1&2 \\
1&0&{ - 1} \\
0&0&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
{ - 1}&0&1 \\
{ - 1}&{\dfrac{1}{2}}&0
\end{array}} \right]A\]
Now apply the row transformation \[{R_2} \to {R_2} - {R_3}\]
\[\left[ {\begin{array}{*{20}{c}}
1&1&2 \\
1&0&0 \\
0&0&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&{ - \dfrac{1}{2}}&1 \\
{ - 1}&{\dfrac{1}{2}}&0
\end{array}} \right]A\]
Now apply the row transformation \[{R_2} \to {R_2} \leftrightarrow {R_1}\]
\[\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
1&1&2 \\
0&0&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - \dfrac{1}{2}}&1 \\
1&0&0 \\
{ - 1}&{\dfrac{1}{2}}&0
\end{array}} \right]A\]
Now apply the row transformation \[{R_2} \to {R_2} - {R_1}\]
\[\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&2 \\
0&0&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - \dfrac{1}{2}}&1 \\
1&{\dfrac{1}{2}}&1 \\
{ - 1}&{\dfrac{1}{2}}&0
\end{array}} \right]A\]
Now apply the row transformation \[{R_2} \to {R_2} + 2{R_3}\]
\[\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&{ - 1}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - \dfrac{1}{2}}&1 \\
{ - 1}&{\dfrac{3}{2}}&1 \\
{ - 1}&{\dfrac{1}{2}}&0
\end{array}} \right]A\]
Now apply the row transformation \[{R_3} \to {R_3} \times - 1\]
\[\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - \dfrac{1}{2}}&1 \\
{ - 1}&{\dfrac{3}{2}}&1 \\
1&{ - \dfrac{1}{2}}&0
\end{array}} \right]A\]
Hence we have obtained \[I = {A^{ - 1}}A\]
Therefore the inverse of \[A = \left[ {\begin{array}{*{20}{c}}
1&1&2 \\
2&2&2 \\
2&1&1
\end{array}} \right]\] is \[{A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
0&{ - \dfrac{1}{2}}&1 \\
{ - 1}&{\dfrac{3}{2}}&1 \\
1&{ - \dfrac{1}{2}}&0
\end{array}} \right]\]
Note: When we use row reduced echelon form either we must use row transformation or column transformation. We can’t use both the transformation at a time to the matrix. While using transformation we must take care of signs and sometimes we alter the rows for easier simplification.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

