
Find the intensity at a point on a screen in Young’s double-slit experiment where interfering waves of equal intensity have a path difference of
I. $\dfrac{\lambda }{4}$
II. $\dfrac{\lambda }{3}$
Answer
535.2k+ views
Hint:We will first discuss the intensity. The intensity is a type of radiant energy defined as the power transferred per given unit area, where the area can be measured perpendicularly to the direction of the propagation of the radiant energy. Hence to find the intensity at a point on a screen we will use the concept of the intensity for the given wavelength$\lambda $.
Formula used:
Intensity formula
$I = 4{I_0}{\cos ^2}\dfrac{\phi }{2}$
where $\phi $ is the phase difference.
Complete step by step answer:
We will consider the intensity at a point on a screen in Young’s double-slit experiment for the interfering waves of equal intensity which can be given as
$I = 4{I_0}{\cos ^2}\dfrac{\phi }{2}$ …… $(1)$
where $\phi $ is the phase difference.
As we know that the phase difference can be defined as the differences when two or more alternating quantities when reached at their zero or maximum values and the phase difference can be given by the formula as
$\Delta \phi = \dfrac{{2\pi }}{\lambda } \times \Delta x$ ……. $(2)$
Where $\Delta x$ is the path difference.
I. For $\dfrac{\lambda }{4}$
Here for the given, first case, the path difference is given as $\Delta x = \dfrac{\lambda }{4}$, and substitute it in the equation $(2)$. Hence
$\Delta \phi = \dfrac{{2\pi }}{\lambda } \times \dfrac{\lambda }{4}$
$ \Rightarrow \Delta \phi = \dfrac{\pi }{2}$
Now substituting the value of $\Delta \phi = \dfrac{\pi }{2}$ in the equation $(1)$, which provides us the intensity given as $I = 4{I_0}{\cos ^2}\dfrac{\phi }{2}$
$ \Rightarrow I = 4{I_0}{\cos ^2}\left( {\dfrac{1}{2} \times \dfrac{\pi }{2}} \right)$ …… $(3)$
As we know that the the value of $\cos \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}$, thus putting this value in the equation $(3)$ gives us
$I = 4{I_0}{\cos ^2}\left( {\dfrac{\pi }{4}} \right)$
$ \Rightarrow I = 4{I_0} \times \left( {\dfrac{1}{2}} \right)$
Hence this gives us the final answer of the intensity as
$I = 4{I_0} \times \dfrac{1}{2}$
$ \Rightarrow I = 2{I_0}$
Therefore the intensity at a point on a screen in Young’s double-slit experiment where interfering waves of equal intensity have a path difference of $\dfrac{\lambda }{4}$ is given as $2{I_0}$.
II. For $\dfrac{\lambda }{3}$
Here for the given, second case, the path difference is given as $\Delta x = \dfrac{\lambda }{3}$, and substitute it in the equation $(2)$. Hence
$\Delta \phi = \dfrac{{2\pi }}{\lambda } \times \dfrac{\lambda }{3}$
$ \Rightarrow \Delta \phi = \dfrac{{2\pi }}{3}$
Now substituting the value of $\Delta \phi = \dfrac{{2\pi }}{3}$ in the equation $(1)$, which provides us the intensity given as $I = 4{I_0}{\cos ^2}\dfrac{\phi }{2}$
$ \Rightarrow I = 4{I_0}{\cos ^2}\left( {\dfrac{1}{2} \times \dfrac{{2\pi }}{3}} \right)$ …… $(4)$
As we know that the the value of $\cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2}$, putting this value in the equation $(4)$ gives us
$I = 4{I_0}{\cos ^2}\left( {\dfrac{\pi }{3}} \right)$
$ \Rightarrow I = 4{I_0} \times {\left( {\dfrac{1}{2}} \right)^2}$
Hence this gives us the final answer of the intensity as
$I = 4{I_0} \times \dfrac{1}{4}$
$ \therefore I = {I_0}$
Therefore the intensity at a point on a screen in Young’s double-slit experiment where interfering waves of equal intensity have a path difference of $\dfrac{\lambda }{3}$ is given as ${I_0}$.
Note: While dealing with such questions one should ensure that the proper methods are used and while dealing with trigonometric functions like $\sin $ and $\cos $ it should be ensured the proper conversion should be made from degree to radian or vice versa.
Formula used:
Intensity formula
$I = 4{I_0}{\cos ^2}\dfrac{\phi }{2}$
where $\phi $ is the phase difference.
Complete step by step answer:
We will consider the intensity at a point on a screen in Young’s double-slit experiment for the interfering waves of equal intensity which can be given as
$I = 4{I_0}{\cos ^2}\dfrac{\phi }{2}$ …… $(1)$
where $\phi $ is the phase difference.
As we know that the phase difference can be defined as the differences when two or more alternating quantities when reached at their zero or maximum values and the phase difference can be given by the formula as
$\Delta \phi = \dfrac{{2\pi }}{\lambda } \times \Delta x$ ……. $(2)$
Where $\Delta x$ is the path difference.
I. For $\dfrac{\lambda }{4}$
Here for the given, first case, the path difference is given as $\Delta x = \dfrac{\lambda }{4}$, and substitute it in the equation $(2)$. Hence
$\Delta \phi = \dfrac{{2\pi }}{\lambda } \times \dfrac{\lambda }{4}$
$ \Rightarrow \Delta \phi = \dfrac{\pi }{2}$
Now substituting the value of $\Delta \phi = \dfrac{\pi }{2}$ in the equation $(1)$, which provides us the intensity given as $I = 4{I_0}{\cos ^2}\dfrac{\phi }{2}$
$ \Rightarrow I = 4{I_0}{\cos ^2}\left( {\dfrac{1}{2} \times \dfrac{\pi }{2}} \right)$ …… $(3)$
As we know that the the value of $\cos \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}$, thus putting this value in the equation $(3)$ gives us
$I = 4{I_0}{\cos ^2}\left( {\dfrac{\pi }{4}} \right)$
$ \Rightarrow I = 4{I_0} \times \left( {\dfrac{1}{2}} \right)$
Hence this gives us the final answer of the intensity as
$I = 4{I_0} \times \dfrac{1}{2}$
$ \Rightarrow I = 2{I_0}$
Therefore the intensity at a point on a screen in Young’s double-slit experiment where interfering waves of equal intensity have a path difference of $\dfrac{\lambda }{4}$ is given as $2{I_0}$.
II. For $\dfrac{\lambda }{3}$
Here for the given, second case, the path difference is given as $\Delta x = \dfrac{\lambda }{3}$, and substitute it in the equation $(2)$. Hence
$\Delta \phi = \dfrac{{2\pi }}{\lambda } \times \dfrac{\lambda }{3}$
$ \Rightarrow \Delta \phi = \dfrac{{2\pi }}{3}$
Now substituting the value of $\Delta \phi = \dfrac{{2\pi }}{3}$ in the equation $(1)$, which provides us the intensity given as $I = 4{I_0}{\cos ^2}\dfrac{\phi }{2}$
$ \Rightarrow I = 4{I_0}{\cos ^2}\left( {\dfrac{1}{2} \times \dfrac{{2\pi }}{3}} \right)$ …… $(4)$
As we know that the the value of $\cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2}$, putting this value in the equation $(4)$ gives us
$I = 4{I_0}{\cos ^2}\left( {\dfrac{\pi }{3}} \right)$
$ \Rightarrow I = 4{I_0} \times {\left( {\dfrac{1}{2}} \right)^2}$
Hence this gives us the final answer of the intensity as
$I = 4{I_0} \times \dfrac{1}{4}$
$ \therefore I = {I_0}$
Therefore the intensity at a point on a screen in Young’s double-slit experiment where interfering waves of equal intensity have a path difference of $\dfrac{\lambda }{3}$ is given as ${I_0}$.
Note: While dealing with such questions one should ensure that the proper methods are used and while dealing with trigonometric functions like $\sin $ and $\cos $ it should be ensured the proper conversion should be made from degree to radian or vice versa.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Plot a graph between potential difference V and current class 12 physics CBSE

