
Find the integration of the following.
$
\int {\dfrac{{{\text{se}}{{\text{c}}^2}x}}{{{{(\sec x + \tan x)}^{\dfrac{9}{2}}}}}} dx{\text{ equals}} \\
{\text{A}}{\text{. }} - \dfrac{1}{{{{(\sec x + \tan x)}^{\dfrac{{11}}{2}}}}}\{ \dfrac{1}{{11}} - \dfrac{1}{7}{(\sec x + \tan x)^2}\} + K \\
{\text{B}}{\text{. }}\dfrac{1}{{{{(\sec x + \tan x)}^{\dfrac{{11}}{2}}}}}\{ \dfrac{1}{{11}} - \dfrac{1}{7}{(\sec x + \tan x)^2}\} + K \\
{\text{C}}{\text{. }} - \dfrac{1}{{{{(\sec x + \tan x)}^{\dfrac{{11}}{2}}}}}\{ \dfrac{1}{{11}} + \dfrac{1}{7}{(\sec x + \tan x)^{}}\} + K \\
{\text{D}}{\text{. None of the above}} \\
$
Answer
587.4k+ views
Hint: In this question first we have to let \[\sec x{\text{ + }}\tan x{\text{ = t }}\]then using trigonometric relations we convert the given question into simpler form like \[\int {{x^n}dx} \]and then integrate it using formula \[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} \] to get answer in term of t then we substitute of t equal to\[\sec x{\text{ + }}\tan x{\text{ }}\]for getting answer in terms of $ x $
Complete step-by-step answer:
\[{\text{Let I = }}\int {\dfrac{{{\text{se}}{{\text{c}}^2}x}}{{{{(\sec x + \tan x)}^{\dfrac{9}{2}}}}}} dx{\text{ eq}}{\text{.1}}\]
Now, again let \[\sec x{\text{ + }}\tan x{\text{ = t}}\] eq.2
We know, \[{\text{se}}{{\text{c}}^2}x - {\text{ta}}{{\text{n}}^2}x = 1\]
\[
\Rightarrow {\text{ }}(\sec x + \tan x)(\sec x - \tan x) = 1{\text{ }} \\
\Rightarrow {\text{ t}}(\sec x - \tan x) = 1{\text{ \{ }}\therefore {\text{from eq}}{\text{.1\} }} \\
\Rightarrow {\text{ }}(\sec x - \tan x) = \dfrac{1}{{\text{t}}}{\text{ eq}}{\text{.3 }} \\
\]
Add eq.2 and eq.3 we get
\[
\Rightarrow {\text{ }}(\sec x - \tan x) + (\sec x{\text{ + }}\tan x) = \dfrac{1}{{\text{t}}}{\text{ + t }} \\
\Rightarrow {\text{ }}\sec x + \sec x = \dfrac{1}{{\text{t}}}{\text{ + t}} \\
\Rightarrow {\text{ }}\sec x = \dfrac{1}{2}(\dfrac{1}{{\text{t}}}{\text{ + t) eq}}{\text{.4}} \\
\]
We know the differentiation of \[\sec x{\text{ = }}\sec x\tan x\]and of \[\tan x = {\sec ^2}x{\text{ }}\]
Then, we apply $ \dfrac{{dx}}{{dt}} $ on eq.2, we get
\[ \Rightarrow {\text{ }}(\sec x\tan x + {\sec ^2}x)dx = dt\]
On taking \[\sec x\] common from above equation, we get
\[
\Rightarrow {\text{ }}\sec x(\tan x + \sec x)dx = dt \\
\Rightarrow {\text{ }}\sec xdx = \dfrac{{dt}}{{(\tan x + \sec x)}} \\
\Rightarrow {\text{ }}\sec xdx = \dfrac{{dt}}{{\text{t}}}{\text{ \{ }}\therefore {\text{from eq}}{\text{.2\} eq}}{\text{.5}} \\
\]
Now with the help of eq.2, eq.3, eq.4, we can rewrite eq.1 as
\[ \Rightarrow {\text{ I = }}\int {\dfrac{1}{2}\dfrac{{({\text{t + }}\dfrac{1}{{\text{t}}})}}{{{{\text{t}}^{\dfrac{9}{2}}}}}\dfrac{{dt}}{{\text{t}}}} \]
On simplifying the above equation
\[ \Rightarrow {\text{ I = }}\dfrac{1}{2}\int {({{\text{t}}^{\dfrac{{ - 9}}{2}}}{\text{ + }}{{\text{t}}^{\dfrac{{ - 13}}{2}}})dt} \]
We know, \[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} \]
Then,
\[
\Rightarrow {\text{ I = }}\dfrac{1}{2}\{ (\dfrac{{{{\text{t}}^{\dfrac{{ - 9}}{2} + 1}}}}{{^{\dfrac{{ - 9}}{2} + 1}}}{\text{) + (}}\dfrac{{{{\text{t}}^{\dfrac{{ - 13}}{2} + 1}}}}{{^{\dfrac{{ - 13}}{2} + 1}}})\} {\text{ + }}K \\
\Rightarrow {\text{ I = }}\dfrac{1}{2}\{ (\dfrac{{{{\text{t}}^{\dfrac{{ - 7}}{2}}}}}{{^{\dfrac{{ - 7}}{2}}}}{\text{) + (}}\dfrac{{{{\text{t}}^{\dfrac{{ - 11}}{2}}}}}{{^{\dfrac{{ - 11}}{2}}}})\} {\text{ + }}K \\
\Rightarrow {\text{ I = }} - \{ (\dfrac{{{{\text{t}}^{\dfrac{{ - 7}}{2}}}}}{7}{\text{) + (}}\dfrac{{{{\text{t}}^{\dfrac{{ - 11}}{2}}}}}{{{{11}^{}}}})\} {\text{ + }}K \\
\]
On taking \[{{\text{t}}^{\dfrac{{ - 11}}{2}}}\] common from above equation, we get
\[ \Rightarrow {\text{ I = }} - {{\text{t}}^{\dfrac{{ - 11}}{2}}}\{ (\dfrac{{{{\text{t}}^2}}}{7}{\text{) + (}}\dfrac{1}{{{{11}^{}}}})\} {\text{ + }}K\]
Now, put \[{\text{t = }}\sec x{\text{ + }}\tan x\] from eq.2, we get
\[
\Rightarrow {\text{ I = }} - \dfrac{1}{{{{(\sec x{\text{ + }}\tan x)}^{\dfrac{{11}}{2}}}}}\{ \dfrac{{{{(\sec x{\text{ + }}\tan x)}^2}}}{7}{\text{ + }}\dfrac{1}{{{{11}^{}}}}\} {\text{ + }}K \\
\Rightarrow \int {\dfrac{{{\text{se}}{{\text{c}}^2}x}}{{{{(\sec x + \tan x)}^{\dfrac{9}{2}}}}}} dx{\text{ = }} - \dfrac{1}{{{{(\sec x{\text{ + }}\tan x)}^{\dfrac{{11}}{2}}}}}\{ \dfrac{{{{(\sec x{\text{ + }}\tan x)}^2}}}{7}{\text{ + }}\dfrac{1}{{{{11}^{}}}}\} {\text{ + }}K \\
\]
So, the correct answer is “Option D”.
Note: Whenever you get this type of problem the key concept of solving is to observe the trigonometric functions involved in it. And what to let as in this question we letting the \[\sec x{\text{ + }}\tan x{\text{ }}\]= t to convert expression into some simpler expression of which we know the integration (\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} \]). And one more thing, at least on obtaining an answer in terms of letting variables you have to put its value that you let at the starting of the question.
Complete step-by-step answer:
\[{\text{Let I = }}\int {\dfrac{{{\text{se}}{{\text{c}}^2}x}}{{{{(\sec x + \tan x)}^{\dfrac{9}{2}}}}}} dx{\text{ eq}}{\text{.1}}\]
Now, again let \[\sec x{\text{ + }}\tan x{\text{ = t}}\] eq.2
We know, \[{\text{se}}{{\text{c}}^2}x - {\text{ta}}{{\text{n}}^2}x = 1\]
\[
\Rightarrow {\text{ }}(\sec x + \tan x)(\sec x - \tan x) = 1{\text{ }} \\
\Rightarrow {\text{ t}}(\sec x - \tan x) = 1{\text{ \{ }}\therefore {\text{from eq}}{\text{.1\} }} \\
\Rightarrow {\text{ }}(\sec x - \tan x) = \dfrac{1}{{\text{t}}}{\text{ eq}}{\text{.3 }} \\
\]
Add eq.2 and eq.3 we get
\[
\Rightarrow {\text{ }}(\sec x - \tan x) + (\sec x{\text{ + }}\tan x) = \dfrac{1}{{\text{t}}}{\text{ + t }} \\
\Rightarrow {\text{ }}\sec x + \sec x = \dfrac{1}{{\text{t}}}{\text{ + t}} \\
\Rightarrow {\text{ }}\sec x = \dfrac{1}{2}(\dfrac{1}{{\text{t}}}{\text{ + t) eq}}{\text{.4}} \\
\]
We know the differentiation of \[\sec x{\text{ = }}\sec x\tan x\]and of \[\tan x = {\sec ^2}x{\text{ }}\]
Then, we apply $ \dfrac{{dx}}{{dt}} $ on eq.2, we get
\[ \Rightarrow {\text{ }}(\sec x\tan x + {\sec ^2}x)dx = dt\]
On taking \[\sec x\] common from above equation, we get
\[
\Rightarrow {\text{ }}\sec x(\tan x + \sec x)dx = dt \\
\Rightarrow {\text{ }}\sec xdx = \dfrac{{dt}}{{(\tan x + \sec x)}} \\
\Rightarrow {\text{ }}\sec xdx = \dfrac{{dt}}{{\text{t}}}{\text{ \{ }}\therefore {\text{from eq}}{\text{.2\} eq}}{\text{.5}} \\
\]
Now with the help of eq.2, eq.3, eq.4, we can rewrite eq.1 as
\[ \Rightarrow {\text{ I = }}\int {\dfrac{1}{2}\dfrac{{({\text{t + }}\dfrac{1}{{\text{t}}})}}{{{{\text{t}}^{\dfrac{9}{2}}}}}\dfrac{{dt}}{{\text{t}}}} \]
On simplifying the above equation
\[ \Rightarrow {\text{ I = }}\dfrac{1}{2}\int {({{\text{t}}^{\dfrac{{ - 9}}{2}}}{\text{ + }}{{\text{t}}^{\dfrac{{ - 13}}{2}}})dt} \]
We know, \[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} \]
Then,
\[
\Rightarrow {\text{ I = }}\dfrac{1}{2}\{ (\dfrac{{{{\text{t}}^{\dfrac{{ - 9}}{2} + 1}}}}{{^{\dfrac{{ - 9}}{2} + 1}}}{\text{) + (}}\dfrac{{{{\text{t}}^{\dfrac{{ - 13}}{2} + 1}}}}{{^{\dfrac{{ - 13}}{2} + 1}}})\} {\text{ + }}K \\
\Rightarrow {\text{ I = }}\dfrac{1}{2}\{ (\dfrac{{{{\text{t}}^{\dfrac{{ - 7}}{2}}}}}{{^{\dfrac{{ - 7}}{2}}}}{\text{) + (}}\dfrac{{{{\text{t}}^{\dfrac{{ - 11}}{2}}}}}{{^{\dfrac{{ - 11}}{2}}}})\} {\text{ + }}K \\
\Rightarrow {\text{ I = }} - \{ (\dfrac{{{{\text{t}}^{\dfrac{{ - 7}}{2}}}}}{7}{\text{) + (}}\dfrac{{{{\text{t}}^{\dfrac{{ - 11}}{2}}}}}{{{{11}^{}}}})\} {\text{ + }}K \\
\]
On taking \[{{\text{t}}^{\dfrac{{ - 11}}{2}}}\] common from above equation, we get
\[ \Rightarrow {\text{ I = }} - {{\text{t}}^{\dfrac{{ - 11}}{2}}}\{ (\dfrac{{{{\text{t}}^2}}}{7}{\text{) + (}}\dfrac{1}{{{{11}^{}}}})\} {\text{ + }}K\]
Now, put \[{\text{t = }}\sec x{\text{ + }}\tan x\] from eq.2, we get
\[
\Rightarrow {\text{ I = }} - \dfrac{1}{{{{(\sec x{\text{ + }}\tan x)}^{\dfrac{{11}}{2}}}}}\{ \dfrac{{{{(\sec x{\text{ + }}\tan x)}^2}}}{7}{\text{ + }}\dfrac{1}{{{{11}^{}}}}\} {\text{ + }}K \\
\Rightarrow \int {\dfrac{{{\text{se}}{{\text{c}}^2}x}}{{{{(\sec x + \tan x)}^{\dfrac{9}{2}}}}}} dx{\text{ = }} - \dfrac{1}{{{{(\sec x{\text{ + }}\tan x)}^{\dfrac{{11}}{2}}}}}\{ \dfrac{{{{(\sec x{\text{ + }}\tan x)}^2}}}{7}{\text{ + }}\dfrac{1}{{{{11}^{}}}}\} {\text{ + }}K \\
\]
So, the correct answer is “Option D”.
Note: Whenever you get this type of problem the key concept of solving is to observe the trigonometric functions involved in it. And what to let as in this question we letting the \[\sec x{\text{ + }}\tan x{\text{ }}\]= t to convert expression into some simpler expression of which we know the integration (\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} \]). And one more thing, at least on obtaining an answer in terms of letting variables you have to put its value that you let at the starting of the question.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

