
Find the integrals of the function \[{{\sin }^{2}}(2x+5)\].
Answer
590.1k+ views
Hint: Convert the square of sine function into cosine function of power one that is used \[\cos 2x=1-2{{\sin }^{2}}x\].
Complete step by step answer:
Write the given function
\[\int{{{\sin }^{2}}(2x+5)}dx\] …… (1)
Let \[t=2x+5\] and differentiate. Therefore,
\[\begin{align}
& dt=2dx+0 \\
& dt=2dx \\
& dx=\frac{dt}{2} \\
\end{align}\]
Substitute the value of \[dx\] in equation (1) and solve:
\[\begin{align}
& \int{{{\sin }^{2}}(2x+5)}dx=\int{{{\sin }^{2}}t}\frac{dt}{2} \\
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{1}{2}\int{{{\sin }^{2}}t}dt \\
\end{align}\] …… (2)
Since,
\[\begin{align}
& \cos 2t=1-2{{\sin }^{2}}t \\
& 2{{\sin }^{2}}t=1-\cos 2t \\
& {{\sin }^{2}}t=\frac{1-\cos 2t}{2} \\
\end{align}\]
Now, substitute the value of \[{{\sin }^{2}}t\] in equation (2) and solve:
\[\begin{align}
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{1}{2}\int{\left( \frac{1-\cos 2t}{2} \right)}dt \\
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{1}{4}\int{\left( 1-\cos 2t \right)}dt \\
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{1}{4}\left[ \int{dt-\int{\cos 2t}}dt \right] \\
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{1}{4}\left[ t-\frac{\sin 2t}{2} \right]+C \\
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{1}{4}t-\frac{\sin 2t}{8}+C \\
\end{align}\] …… (3)
Where, C is the integration constant.
Now, substitute back the value of t in equation (3)
\[\begin{align}
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{1}{4}\left( 2x+5 \right)-\frac{\sin 2\left( 2x+5 \right)}{8}+C \\
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{\left( 2x+5 \right)}{4}-\frac{\sin \left( 4x+10 \right)}{8}+C \\
\end{align}\]
Note: Integration of square of sine function is not possible so it is mandatory to convert the square of sine function into a function of cosine with power one.
Complete step by step answer:
Write the given function
\[\int{{{\sin }^{2}}(2x+5)}dx\] …… (1)
Let \[t=2x+5\] and differentiate. Therefore,
\[\begin{align}
& dt=2dx+0 \\
& dt=2dx \\
& dx=\frac{dt}{2} \\
\end{align}\]
Substitute the value of \[dx\] in equation (1) and solve:
\[\begin{align}
& \int{{{\sin }^{2}}(2x+5)}dx=\int{{{\sin }^{2}}t}\frac{dt}{2} \\
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{1}{2}\int{{{\sin }^{2}}t}dt \\
\end{align}\] …… (2)
Since,
\[\begin{align}
& \cos 2t=1-2{{\sin }^{2}}t \\
& 2{{\sin }^{2}}t=1-\cos 2t \\
& {{\sin }^{2}}t=\frac{1-\cos 2t}{2} \\
\end{align}\]
Now, substitute the value of \[{{\sin }^{2}}t\] in equation (2) and solve:
\[\begin{align}
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{1}{2}\int{\left( \frac{1-\cos 2t}{2} \right)}dt \\
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{1}{4}\int{\left( 1-\cos 2t \right)}dt \\
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{1}{4}\left[ \int{dt-\int{\cos 2t}}dt \right] \\
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{1}{4}\left[ t-\frac{\sin 2t}{2} \right]+C \\
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{1}{4}t-\frac{\sin 2t}{8}+C \\
\end{align}\] …… (3)
Where, C is the integration constant.
Now, substitute back the value of t in equation (3)
\[\begin{align}
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{1}{4}\left( 2x+5 \right)-\frac{\sin 2\left( 2x+5 \right)}{8}+C \\
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{\left( 2x+5 \right)}{4}-\frac{\sin \left( 4x+10 \right)}{8}+C \\
\end{align}\]
Note: Integration of square of sine function is not possible so it is mandatory to convert the square of sine function into a function of cosine with power one.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

