
Find the integrals of the function \[{{\sin }^{2}}(2x+5)\].
Answer
576.3k+ views
Hint: Convert the square of sine function into cosine function of power one that is used \[\cos 2x=1-2{{\sin }^{2}}x\].
Complete step by step answer:
Write the given function
\[\int{{{\sin }^{2}}(2x+5)}dx\] …… (1)
Let \[t=2x+5\] and differentiate. Therefore,
\[\begin{align}
& dt=2dx+0 \\
& dt=2dx \\
& dx=\frac{dt}{2} \\
\end{align}\]
Substitute the value of \[dx\] in equation (1) and solve:
\[\begin{align}
& \int{{{\sin }^{2}}(2x+5)}dx=\int{{{\sin }^{2}}t}\frac{dt}{2} \\
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{1}{2}\int{{{\sin }^{2}}t}dt \\
\end{align}\] …… (2)
Since,
\[\begin{align}
& \cos 2t=1-2{{\sin }^{2}}t \\
& 2{{\sin }^{2}}t=1-\cos 2t \\
& {{\sin }^{2}}t=\frac{1-\cos 2t}{2} \\
\end{align}\]
Now, substitute the value of \[{{\sin }^{2}}t\] in equation (2) and solve:
\[\begin{align}
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{1}{2}\int{\left( \frac{1-\cos 2t}{2} \right)}dt \\
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{1}{4}\int{\left( 1-\cos 2t \right)}dt \\
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{1}{4}\left[ \int{dt-\int{\cos 2t}}dt \right] \\
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{1}{4}\left[ t-\frac{\sin 2t}{2} \right]+C \\
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{1}{4}t-\frac{\sin 2t}{8}+C \\
\end{align}\] …… (3)
Where, C is the integration constant.
Now, substitute back the value of t in equation (3)
\[\begin{align}
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{1}{4}\left( 2x+5 \right)-\frac{\sin 2\left( 2x+5 \right)}{8}+C \\
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{\left( 2x+5 \right)}{4}-\frac{\sin \left( 4x+10 \right)}{8}+C \\
\end{align}\]
Note: Integration of square of sine function is not possible so it is mandatory to convert the square of sine function into a function of cosine with power one.
Complete step by step answer:
Write the given function
\[\int{{{\sin }^{2}}(2x+5)}dx\] …… (1)
Let \[t=2x+5\] and differentiate. Therefore,
\[\begin{align}
& dt=2dx+0 \\
& dt=2dx \\
& dx=\frac{dt}{2} \\
\end{align}\]
Substitute the value of \[dx\] in equation (1) and solve:
\[\begin{align}
& \int{{{\sin }^{2}}(2x+5)}dx=\int{{{\sin }^{2}}t}\frac{dt}{2} \\
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{1}{2}\int{{{\sin }^{2}}t}dt \\
\end{align}\] …… (2)
Since,
\[\begin{align}
& \cos 2t=1-2{{\sin }^{2}}t \\
& 2{{\sin }^{2}}t=1-\cos 2t \\
& {{\sin }^{2}}t=\frac{1-\cos 2t}{2} \\
\end{align}\]
Now, substitute the value of \[{{\sin }^{2}}t\] in equation (2) and solve:
\[\begin{align}
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{1}{2}\int{\left( \frac{1-\cos 2t}{2} \right)}dt \\
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{1}{4}\int{\left( 1-\cos 2t \right)}dt \\
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{1}{4}\left[ \int{dt-\int{\cos 2t}}dt \right] \\
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{1}{4}\left[ t-\frac{\sin 2t}{2} \right]+C \\
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{1}{4}t-\frac{\sin 2t}{8}+C \\
\end{align}\] …… (3)
Where, C is the integration constant.
Now, substitute back the value of t in equation (3)
\[\begin{align}
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{1}{4}\left( 2x+5 \right)-\frac{\sin 2\left( 2x+5 \right)}{8}+C \\
& \int{{{\sin }^{2}}(2x+5)}dx=\frac{\left( 2x+5 \right)}{4}-\frac{\sin \left( 4x+10 \right)}{8}+C \\
\end{align}\]
Note: Integration of square of sine function is not possible so it is mandatory to convert the square of sine function into a function of cosine with power one.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

