
Find the integral of the following expression
${{\tan }^{3}}2x\sec 2x$ with respect to x.
Answer
606.6k+ views
Hint: Let I $=\int{{{\tan }^{3}}2x\sec 2xdx}$. Put 2x = t and hence prove that the given integral is equal to $\int{\dfrac{{{\tan }^{3}}t\sec t}{2}dt}$. Take $\sec t\tan t$ as the second function and \[\dfrac{{{\tan }^{2}}t}{2}\] as first function and integrate by parts. Finally, use ${{\sec }^{2}}t=1+{{\tan }^{2}}t$ and hence express the latter integral formed by integration by parts in terms of I. Hence find the value of I.
Complete step-by-step answer:
Let $I=\int{{{\tan }^{3}}2x\sec 2xdx}$
Put 2x = t
Differentiating both sides, we get
2dx = dt
Dividing both sides by 2, we get
$dx=\dfrac{dt}{2}$
Hence, we get
$I=\int{{{\tan }^{3}}t\sec t\dfrac{dt}{2}}=\int{\dfrac{{{\tan }^{2}}t}{2}\sec t\tan tdt}$
We know that if $\int{g\left( x \right)dx=v\left( x \right)}$ and $\dfrac{d}{dx}f\left( x \right)=u\left( x \right)$, then $\int{f\left( x \right)g\left( x \right)dx}=f\left( x \right)v\left( x \right)-\int{u\left( x \right)v\left( x \right)dx}$
This is known as integration by parts.
Hence, if we take $f\left( t \right)=\dfrac{{{\tan }^{2}}t}{2}$ and $g\left( t \right)=\sec t\tan t$, we have $v\left( t \right)=\int{\sec t\tan tdt}=\sec t$ and $u\left( t \right)=\dfrac{d}{dt}\left( \dfrac{{{\tan }^{2}}t}{2} \right)=\tan t{{\sec }^{2}}t$
Hence, by integration by parts rule, we have
$\int{\dfrac{{{\tan }^{2}}t}{2}\sec t\tan tdt}=\dfrac{{{\tan }^{2}}t}{2}\sec t-\int{\sec t\tan t{{\sec }^{2}}tdt}$
Hence, we have
$I=\dfrac{\sec t{{\tan }^{2}}t}{2}-\int{\tan t{{\sec }^{3}}tdt}$
We know that
${{\sec }^{2}}t=1+{{\tan }^{2}}t$
Hence, we have
${{\sec }^{3}}t\tan t=\sec t\left( 1+{{\tan }^{2}}t \right)\tan t=\sec t\tan t+\sec t{{\tan }^{3}}t$
Hence, we have
$I=\dfrac{\sec t{{\tan }^{2}}t}{2}-\int{\left( \sec t\tan t+\sec t{{\tan }^{3}}t \right)dt}$
We know that \[\int{\left( f\left( x \right)+g\left( x \right) \right)dx}=\int{f\left( x \right)dx}+\int{g\left( x \right)dx}\]
Hence, we have
$I=\dfrac{\sec t{{\tan }^{2}}t}{2}-\int{\sec t\tan tdt}-\int{\sec t{{\tan }^{3}}tdt}$
Now, we know that $I=\int{\dfrac{\sec t{{\tan }^{3}}t}{2}dt}$
Hence, we have
$2I=\int{\sec t{{\tan }^{3}}tdt}$
Hence, we have
$I=\dfrac{\sec t{{\tan }^{2}}t}{2}-\int{\sec t\tan tdt-2I}$
We know that $\int{\sec x\tan xdx}=\sec x$
Hence, we have
$I=\dfrac{\sec t{{\tan }^{2}}t}{2}-\sec t-2I$
Adding 2I on both sides, we get
$3I=\dfrac{\sec t{{\tan }^{2}}t}{2}-\sec t$
Dividing both sides by 3, we get
$I=\dfrac{\sec t{{\tan }^{2}}t}{6}-\dfrac{\sec t}{3}+C$, where C is the constant of integration.
Reverting to the original variable, we have
$I=\dfrac{\sec 2x{{\tan }^{2}}2x}{6}-\dfrac{\sec 2x}{3}+C$
Note: Verification:
We have
$\begin{align}
& \dfrac{d}{dx}\left( \dfrac{\sec 2x{{\tan }^{2}}2x}{6}-\dfrac{\sec 2x}{3} \right)=\dfrac{1}{6}\sec 2x\tan 2x\left( 2 \right){{\tan }^{2}}2x+\dfrac{1}{6}\sec 2x2\tan 2x{{\sec }^{2}}2x\left( 2 \right)-\dfrac{\sec 2x\tan 2x}{3}\left( 2 \right) \\
& =\dfrac{1}{3}\sec 2x{{\tan }^{3}}2x+\dfrac{2}{3}\tan 2x{{\sec }^{3}}2x-\dfrac{2\sec 2x\tan 2x}{3} \\
\end{align}$
Taking sec2xtan2x common, we get
$\dfrac{dI}{dx}=\sec 2x\tan 2x\left( \dfrac{{{\tan }^{2}}x}{3}+\dfrac{2{{\sec }^{2}}x}{3}-\dfrac{2}{3} \right)$
We know that ${{\sec }^{2}}x=1+{{\tan }^{2}}x$
Hence, we have
$\dfrac{dI}{dx}=\dfrac{\sec 2x\tan 2x}{3}\left( {{\tan }^{2}}2x+2{{\tan }^{2}}2x+2-2 \right)$
Hence, we have
$\dfrac{dI}{dx}=\sec 2x{{\tan }^{3}}2x$
Hence our answer is verified to be correct.
Complete step-by-step answer:
Let $I=\int{{{\tan }^{3}}2x\sec 2xdx}$
Put 2x = t
Differentiating both sides, we get
2dx = dt
Dividing both sides by 2, we get
$dx=\dfrac{dt}{2}$
Hence, we get
$I=\int{{{\tan }^{3}}t\sec t\dfrac{dt}{2}}=\int{\dfrac{{{\tan }^{2}}t}{2}\sec t\tan tdt}$
We know that if $\int{g\left( x \right)dx=v\left( x \right)}$ and $\dfrac{d}{dx}f\left( x \right)=u\left( x \right)$, then $\int{f\left( x \right)g\left( x \right)dx}=f\left( x \right)v\left( x \right)-\int{u\left( x \right)v\left( x \right)dx}$
This is known as integration by parts.
Hence, if we take $f\left( t \right)=\dfrac{{{\tan }^{2}}t}{2}$ and $g\left( t \right)=\sec t\tan t$, we have $v\left( t \right)=\int{\sec t\tan tdt}=\sec t$ and $u\left( t \right)=\dfrac{d}{dt}\left( \dfrac{{{\tan }^{2}}t}{2} \right)=\tan t{{\sec }^{2}}t$
Hence, by integration by parts rule, we have
$\int{\dfrac{{{\tan }^{2}}t}{2}\sec t\tan tdt}=\dfrac{{{\tan }^{2}}t}{2}\sec t-\int{\sec t\tan t{{\sec }^{2}}tdt}$
Hence, we have
$I=\dfrac{\sec t{{\tan }^{2}}t}{2}-\int{\tan t{{\sec }^{3}}tdt}$
We know that
${{\sec }^{2}}t=1+{{\tan }^{2}}t$
Hence, we have
${{\sec }^{3}}t\tan t=\sec t\left( 1+{{\tan }^{2}}t \right)\tan t=\sec t\tan t+\sec t{{\tan }^{3}}t$
Hence, we have
$I=\dfrac{\sec t{{\tan }^{2}}t}{2}-\int{\left( \sec t\tan t+\sec t{{\tan }^{3}}t \right)dt}$
We know that \[\int{\left( f\left( x \right)+g\left( x \right) \right)dx}=\int{f\left( x \right)dx}+\int{g\left( x \right)dx}\]
Hence, we have
$I=\dfrac{\sec t{{\tan }^{2}}t}{2}-\int{\sec t\tan tdt}-\int{\sec t{{\tan }^{3}}tdt}$
Now, we know that $I=\int{\dfrac{\sec t{{\tan }^{3}}t}{2}dt}$
Hence, we have
$2I=\int{\sec t{{\tan }^{3}}tdt}$
Hence, we have
$I=\dfrac{\sec t{{\tan }^{2}}t}{2}-\int{\sec t\tan tdt-2I}$
We know that $\int{\sec x\tan xdx}=\sec x$
Hence, we have
$I=\dfrac{\sec t{{\tan }^{2}}t}{2}-\sec t-2I$
Adding 2I on both sides, we get
$3I=\dfrac{\sec t{{\tan }^{2}}t}{2}-\sec t$
Dividing both sides by 3, we get
$I=\dfrac{\sec t{{\tan }^{2}}t}{6}-\dfrac{\sec t}{3}+C$, where C is the constant of integration.
Reverting to the original variable, we have
$I=\dfrac{\sec 2x{{\tan }^{2}}2x}{6}-\dfrac{\sec 2x}{3}+C$
Note: Verification:
We have
$\begin{align}
& \dfrac{d}{dx}\left( \dfrac{\sec 2x{{\tan }^{2}}2x}{6}-\dfrac{\sec 2x}{3} \right)=\dfrac{1}{6}\sec 2x\tan 2x\left( 2 \right){{\tan }^{2}}2x+\dfrac{1}{6}\sec 2x2\tan 2x{{\sec }^{2}}2x\left( 2 \right)-\dfrac{\sec 2x\tan 2x}{3}\left( 2 \right) \\
& =\dfrac{1}{3}\sec 2x{{\tan }^{3}}2x+\dfrac{2}{3}\tan 2x{{\sec }^{3}}2x-\dfrac{2\sec 2x\tan 2x}{3} \\
\end{align}$
Taking sec2xtan2x common, we get
$\dfrac{dI}{dx}=\sec 2x\tan 2x\left( \dfrac{{{\tan }^{2}}x}{3}+\dfrac{2{{\sec }^{2}}x}{3}-\dfrac{2}{3} \right)$
We know that ${{\sec }^{2}}x=1+{{\tan }^{2}}x$
Hence, we have
$\dfrac{dI}{dx}=\dfrac{\sec 2x\tan 2x}{3}\left( {{\tan }^{2}}2x+2{{\tan }^{2}}2x+2-2 \right)$
Hence, we have
$\dfrac{dI}{dx}=\sec 2x{{\tan }^{3}}2x$
Hence our answer is verified to be correct.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

