
How do you find the integral of ${\tan ^2}\left( x \right)\sec \left( x \right)dx$?
Answer
547.8k+ views
Hint:
First, use trigonometry identity to find the value of ${\tan ^2}x$ and put the value of ${\tan ^2}x$ in the given integral. Then, use distributive property in integral. Next, use property (III) to split the integrals. The, solve the first integral by integration by parts and second integral using (IV). Substitute all the values in the combined integral and get the required result.
Formula used:
1) The integral of the product of a constant and a function = the constant $ \times $ integral of the function.
i.e., $\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} $, where $k$ is a constant.
2) Trigonometric identity: ${\tan ^2}x + 1 = {\sec ^2}x$
3) The integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., $\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx} $
4) Integration formula: $\int {{{\sec }^2}xdx} = \tan x$ and \[\int {\sec xdx} = \ln \left| {\sec x + \tan x} \right|\]
5) Differentiation formula: $\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x$
6) Integration by parts: $\int {udv} = uv - \int {vdu} $
Complete step by step solution:
We have to find $\int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} $…(i)
Use identity ${\tan ^2}x - {\sec ^2}x = 1$, to find the value of ${\tan ^2}x$.
Since, ${\tan ^2}x + 1 = {\sec ^2}x$.
So, ${\tan ^2}x = {\sec ^2}x - 1$.
Now, put the value of ${\tan ^2}x$ in integral (i).
$\int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} = \int {\left( {{{\sec }^2}x - 1} \right)\sec xdx} $…(ii)
Use distributive property in integral (ii).
$\int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} = \int {\left( {{{\sec }^3}x - \sec x} \right)dx} $…(iii)
Now, using the property that the integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., $\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx} $
So, in above integral (iii), we can use above property
$\int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} = \int {{{\sec }^3}xdx} - \int {\sec xdx} $…(iv)
First integral: $\int {{{\sec }^3}xdx} $
It can be written as $\int {{{\sec }^2}x\sec xdx} $
Now, use integration by parts with $u = \sec x$ and $dv = {\sec ^2}xdx$…(v)
Differentiate $u$ with respect to $x$.
$\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {\sec x} \right)$…(vi)
Now, using the differentiation formula $\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x$ in differentiation (vi), we get
$\dfrac{{du}}{{dx}} = \sec x\tan x$
$ \Rightarrow du = \sec x\tan xdx$…(vii)
Now, integrate $v$ with respect to $x$.
$\int {dv} = \int {{{\sec }^2}xdx} $…(viii)
Now, using the integration formula $\int {{{\sec }^2}xdx} = \tan x$ in integral (viii), we get
$v = \tan x$…(ix)
The integration by parts formula is:
$\int {udv} = uv - \int {vdu} $
Put the value of $u,v,du,dv$ from (v), (vii) and (ix).
$\int {{{\sec }^2}x\sec xdx} = \sec x\tan x - \int {\tan x\sec x\tan xdx} $
$ \Rightarrow \int {{{\sec }^2}x\sec xdx} = \sec x\tan x - \int {{{\tan }^2}x\sec xdx} $…(x)
Second integral: $\int {\sec xdx} $
Now, using the integration formula \[\int {\sec xdx} = \ln \left| {\sec x + \tan x} \right|\] in second integral, we get
\[ \Rightarrow \int {\sec xdx} = \ln \left| {\sec x + \tan x} \right|\]…(xi)
Use equation (x) and (xi) in equation (iv).
$\int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} = \sec x\tan x - \int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} + \ln \left| {\sec x + \tan x} \right|$
We can add the $\int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} $ on the right to the left to get:
$2\int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} = \sec x\tan x + \ln \left| {\sec x + \tan x} \right|$
$ \Rightarrow \int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} = \dfrac{1}{2}\sec x\tan x + \dfrac{1}{2}\ln \left| {\sec x + \tan x} \right| + C$
Hence, $\int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} = \dfrac{1}{2}\sec x\tan x + \dfrac{1}{2}\ln \left| {\sec x + \tan x} \right| + C$.
Note:
If instead we had $\int {\tan x{{\sec }^2}xdx} $, we could make the simple substitution $u = \tan x$, $du = {\sec ^2}xdx$, which would make the integral $\int {udu} $. Unfortunately, that is not the case.
First, use trigonometry identity to find the value of ${\tan ^2}x$ and put the value of ${\tan ^2}x$ in the given integral. Then, use distributive property in integral. Next, use property (III) to split the integrals. The, solve the first integral by integration by parts and second integral using (IV). Substitute all the values in the combined integral and get the required result.
Formula used:
1) The integral of the product of a constant and a function = the constant $ \times $ integral of the function.
i.e., $\int {\left( {kf\left( x \right)dx} \right)} = k\int {f\left( x \right)dx} $, where $k$ is a constant.
2) Trigonometric identity: ${\tan ^2}x + 1 = {\sec ^2}x$
3) The integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., $\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx} $
4) Integration formula: $\int {{{\sec }^2}xdx} = \tan x$ and \[\int {\sec xdx} = \ln \left| {\sec x + \tan x} \right|\]
5) Differentiation formula: $\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x$
6) Integration by parts: $\int {udv} = uv - \int {vdu} $
Complete step by step solution:
We have to find $\int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} $…(i)
Use identity ${\tan ^2}x - {\sec ^2}x = 1$, to find the value of ${\tan ^2}x$.
Since, ${\tan ^2}x + 1 = {\sec ^2}x$.
So, ${\tan ^2}x = {\sec ^2}x - 1$.
Now, put the value of ${\tan ^2}x$ in integral (i).
$\int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} = \int {\left( {{{\sec }^2}x - 1} \right)\sec xdx} $…(ii)
Use distributive property in integral (ii).
$\int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} = \int {\left( {{{\sec }^3}x - \sec x} \right)dx} $…(iii)
Now, using the property that the integral of the sum or difference of a finite number of functions is equal to the sum or difference of the integrals of the various functions.
i.e., $\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} \pm \int {g\left( x \right)dx} $
So, in above integral (iii), we can use above property
$\int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} = \int {{{\sec }^3}xdx} - \int {\sec xdx} $…(iv)
First integral: $\int {{{\sec }^3}xdx} $
It can be written as $\int {{{\sec }^2}x\sec xdx} $
Now, use integration by parts with $u = \sec x$ and $dv = {\sec ^2}xdx$…(v)
Differentiate $u$ with respect to $x$.
$\dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\left( {\sec x} \right)$…(vi)
Now, using the differentiation formula $\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x$ in differentiation (vi), we get
$\dfrac{{du}}{{dx}} = \sec x\tan x$
$ \Rightarrow du = \sec x\tan xdx$…(vii)
Now, integrate $v$ with respect to $x$.
$\int {dv} = \int {{{\sec }^2}xdx} $…(viii)
Now, using the integration formula $\int {{{\sec }^2}xdx} = \tan x$ in integral (viii), we get
$v = \tan x$…(ix)
The integration by parts formula is:
$\int {udv} = uv - \int {vdu} $
Put the value of $u,v,du,dv$ from (v), (vii) and (ix).
$\int {{{\sec }^2}x\sec xdx} = \sec x\tan x - \int {\tan x\sec x\tan xdx} $
$ \Rightarrow \int {{{\sec }^2}x\sec xdx} = \sec x\tan x - \int {{{\tan }^2}x\sec xdx} $…(x)
Second integral: $\int {\sec xdx} $
Now, using the integration formula \[\int {\sec xdx} = \ln \left| {\sec x + \tan x} \right|\] in second integral, we get
\[ \Rightarrow \int {\sec xdx} = \ln \left| {\sec x + \tan x} \right|\]…(xi)
Use equation (x) and (xi) in equation (iv).
$\int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} = \sec x\tan x - \int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} + \ln \left| {\sec x + \tan x} \right|$
We can add the $\int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} $ on the right to the left to get:
$2\int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} = \sec x\tan x + \ln \left| {\sec x + \tan x} \right|$
$ \Rightarrow \int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} = \dfrac{1}{2}\sec x\tan x + \dfrac{1}{2}\ln \left| {\sec x + \tan x} \right| + C$
Hence, $\int {{{\tan }^2}\left( x \right)\sec \left( x \right)dx} = \dfrac{1}{2}\sec x\tan x + \dfrac{1}{2}\ln \left| {\sec x + \tan x} \right| + C$.
Note:
If instead we had $\int {\tan x{{\sec }^2}xdx} $, we could make the simple substitution $u = \tan x$, $du = {\sec ^2}xdx$, which would make the integral $\int {udu} $. Unfortunately, that is not the case.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

