
How do you find the integral of $\left[ {{x^4}\sin x\,dx} \right]$?
Answer
490.2k+ views
Hint:In this question, we have to do by-parts integration. But here we have to do the by-parts integration not once but several times till we get to the final answer. So, for that we should know the formula of by-parts integration and how we apply it.
Formula used: $\int {u\,v\,dx = u\int {v\,dx - \int {\left( {\frac{{du}}{{dx}}\int {vdx} } \right)dx} } } $
Complete step by step answer:
In the above question, it is given that we have to find the integral of $\left[ {{x^4}\sin x\,dx} \right]$.
In this question, we need to integrate by parts repeatedly, to reduce the degree of x.
$\int {{x^4}\sin x\,dx = } {x^4}\int {\sin xdx - \int {\left[ {\frac{d}{{dx}}{x^4}\int {\sin xdx} } \right]} } $
$ \Rightarrow {x^4}\left( { - \cos x} \right) - \left[ {\int {4{x^3}\left( { - \cos x} \right)dx} } \right]$
Now, on simplification we get
$ \Rightarrow - {x^4}\cos x + \left[ {\int {4{x^3}\left( {\cos x} \right)dx} } \right]$
$ \Rightarrow - {x^4}\cos x + 4{x^3}\int {\cos dx - \left[ {\int {\frac{d}{{dx}}\left( {4{x^3}} \right)\int {\cos xdx} } } \right]} $
$ \Rightarrow - {x^4}\cos x + 4{x^3}\sin x - \int {12{x^2}\sin xdx} $
$ \Rightarrow - {x^4}\cos x + 4{x^3}\sin x + 12{x^2}\cos x - \int {24x\cos xdx} $
$ \Rightarrow - {x^4}\cos x + 4{x^3}\sin x + 12{x^2}\cos x - 24x\sin x + 24\int {\sin xdx} $
$ \Rightarrow - {x^4}\cos x + 4{x^3}\sin x + 12{x^2}\cos x - 24x\sin x + 24\left( { - \cos x} \right) + C$
$ \Rightarrow - {x^4}\cos x + 4{x^3}\sin x + 12{x^2}\cos x - 24x\sin x - 24\cos x + C$
Therefore, the value of the required integral is $ \Rightarrow - {x^4}\cos x + 4{x^3}\sin x + 12{x^2}\cos x - 24x\sin x - 24\cos x + C$.
Note:Integration by parts is a special technique of integration of two functions when they are multiplied. This method is also termed as partial integration. Another method to integrate a given function is integration by substitution method. These methods are used to make complicated integrations easy.
Formula used: $\int {u\,v\,dx = u\int {v\,dx - \int {\left( {\frac{{du}}{{dx}}\int {vdx} } \right)dx} } } $
Complete step by step answer:
In the above question, it is given that we have to find the integral of $\left[ {{x^4}\sin x\,dx} \right]$.
In this question, we need to integrate by parts repeatedly, to reduce the degree of x.
$\int {{x^4}\sin x\,dx = } {x^4}\int {\sin xdx - \int {\left[ {\frac{d}{{dx}}{x^4}\int {\sin xdx} } \right]} } $
$ \Rightarrow {x^4}\left( { - \cos x} \right) - \left[ {\int {4{x^3}\left( { - \cos x} \right)dx} } \right]$
Now, on simplification we get
$ \Rightarrow - {x^4}\cos x + \left[ {\int {4{x^3}\left( {\cos x} \right)dx} } \right]$
$ \Rightarrow - {x^4}\cos x + 4{x^3}\int {\cos dx - \left[ {\int {\frac{d}{{dx}}\left( {4{x^3}} \right)\int {\cos xdx} } } \right]} $
$ \Rightarrow - {x^4}\cos x + 4{x^3}\sin x - \int {12{x^2}\sin xdx} $
$ \Rightarrow - {x^4}\cos x + 4{x^3}\sin x + 12{x^2}\cos x - \int {24x\cos xdx} $
$ \Rightarrow - {x^4}\cos x + 4{x^3}\sin x + 12{x^2}\cos x - 24x\sin x + 24\int {\sin xdx} $
$ \Rightarrow - {x^4}\cos x + 4{x^3}\sin x + 12{x^2}\cos x - 24x\sin x + 24\left( { - \cos x} \right) + C$
$ \Rightarrow - {x^4}\cos x + 4{x^3}\sin x + 12{x^2}\cos x - 24x\sin x - 24\cos x + C$
Therefore, the value of the required integral is $ \Rightarrow - {x^4}\cos x + 4{x^3}\sin x + 12{x^2}\cos x - 24x\sin x - 24\cos x + C$.
Note:Integration by parts is a special technique of integration of two functions when they are multiplied. This method is also termed as partial integration. Another method to integrate a given function is integration by substitution method. These methods are used to make complicated integrations easy.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

