
How do you find the integral of $ {e^{3x}} \cdot \cos 3xdx $ ?
Answer
429k+ views
Hint: To find the integral of $ {e^{3x}} \cdot \cos 3xdx $ , we are going to use integration by parts. The formula for integration by parts is
For $ I = \int {uvdx} $ ,
$ \Rightarrow I = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } dx $
Here, the values of u and v are selected on the basis of ILATE rule. We have explained the integration by parts method in detail below.
Complete step by step solution:
In this question, we are given an expression and we need to find its integral. First of all, let this given integral be equal to $ I $.
The given expression is: $ I = {e^{3x}} \cdot \cos 3xdx $ - - - - - - - - - - - - - - - (1)
Integrating equation (1), we get
$ \Rightarrow I = \int {{e^{3x}} \cdot \cos 3xdx} $ - - - - - - - - - - (2)
Here, we can see that the expression in equation (2) is in the form $ I = \int {uvdx} $ . That is we are going to use Bernoulli's rule for integration by parts to find the integral of equation (2).
Bernoulli’s rule for integration by parts for $ I = \int {uvdx} $ is
$ \Rightarrow I = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } dx $
Here, we have to decide the value of u and v based on their order using the ILATE rule. ILATE stands for
I – Inverse trigonometric Functions
L – Log functions
A – Algebraic Functions
T – Trigonometric functions
E – Exponential functions
So, here
$ u = \cos 3x $ and $ v = {e^{3x}} $
Therefore, we get
\[
\Rightarrow I = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } dx \\
\Rightarrow I = \cos 3x\int {{e^{3x}}dx - \int {\left( {\dfrac{{d\cos 3x}}{{dx}}\int {{e^{3x}}dx} } \right)} } dx \\
\Rightarrow I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) - \int {\left( { - 3\sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right)} \right)} dx \;
\]
\[ \Rightarrow I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) + \int {{e^{3x}}\sin 3xdx} \]
\[ \Rightarrow I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) + {I_1}\]- - - - - - - - - (3)
Here, $ {I_1} = {e^{3x}}\sin 3x $
Now, we need to again use integration by parts to find this value. Therefore,
\[
\Rightarrow {I_1} = \int {{e^{3x}}\sin 3x} \\
\Rightarrow {I_1} = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } dx \\
\Rightarrow {I_1} = \sin 3x\int {{e^{3x}}dx - \int {\left( {\dfrac{{d\sin 3x}}{{dx}}\int {{e^{3x}}dx} } \right)} } dx \\
\Rightarrow {I_1} = \sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) - \int {\left( {3\cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right)} \right)} dx \;
\]
\[ \Rightarrow {I_1} = \sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) - \int {{e^{3x}}\cos 3xdx} \]- - - - - - - - - (4)
Now, our question was
$ \Rightarrow I = \int {{e^{3x}} \cdot \cos 3xdx} $
Therefore, equation (4) becomes
\[ \Rightarrow {I_1} = \sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) - I\]
Substituting this in equation (3), we get
\[
\Rightarrow I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) + {I_1} \\
\Rightarrow I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) + \sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) - I \\
\Rightarrow 2I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) + \sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) \\
\Rightarrow 2I = \dfrac{{{e^{3x}}}}{3}\left( {\cos 3x + \sin 3x} \right) \\
\Rightarrow I = \dfrac{{{e^{3x}}}}{6}\left( {\cos 3x + \sin 3x} \right) + c \;
\]
Where, c is integration constant.
Hence, we have found the integral of $ \int {{e^{3x}} \cdot \cos 3xdx} $ .
So, the correct answer is “ $I = \dfrac{{{e^{3x}}}}{6}\left( {\cos 3x + \sin 3x} \right) + c $ ”.
Note: There is also a shortcut method for solving this question. We have a direct formula that is
$ \Rightarrow \int {{e^{ax}}\cos bxdx = \dfrac{{{e^{ax}}}}{{{a^2} + {b^2}}}\left( {a\cos bx + b\sin bx} \right)} + c $
Therefore,
$
\Rightarrow \int {{e^{3x}}\cos 3xdx = \dfrac{{{e^{3x}}}}{{{3^2} + {3^2}}}\left( {3\cos 3x + 3\sin 3x} \right)} + c \\
\Rightarrow \int {{e^{3x}}\cos 3xdx = } \dfrac{{{e^{3x}}}}{{18}} \times 3\left( {\cos 3x + \sin 3x} \right) + c \\
\Rightarrow \int {{e^{3x}}\cos 3xdx = } \dfrac{{{e^{3x}}}}{6}\left( {\cos 3x + \sin 3x} \right) + c \\
$
For $ I = \int {uvdx} $ ,
$ \Rightarrow I = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } dx $
Here, the values of u and v are selected on the basis of ILATE rule. We have explained the integration by parts method in detail below.
Complete step by step solution:
In this question, we are given an expression and we need to find its integral. First of all, let this given integral be equal to $ I $.
The given expression is: $ I = {e^{3x}} \cdot \cos 3xdx $ - - - - - - - - - - - - - - - (1)
Integrating equation (1), we get
$ \Rightarrow I = \int {{e^{3x}} \cdot \cos 3xdx} $ - - - - - - - - - - (2)
Here, we can see that the expression in equation (2) is in the form $ I = \int {uvdx} $ . That is we are going to use Bernoulli's rule for integration by parts to find the integral of equation (2).
Bernoulli’s rule for integration by parts for $ I = \int {uvdx} $ is
$ \Rightarrow I = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } dx $
Here, we have to decide the value of u and v based on their order using the ILATE rule. ILATE stands for
I – Inverse trigonometric Functions
L – Log functions
A – Algebraic Functions
T – Trigonometric functions
E – Exponential functions
So, here
$ u = \cos 3x $ and $ v = {e^{3x}} $
Therefore, we get
\[
\Rightarrow I = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } dx \\
\Rightarrow I = \cos 3x\int {{e^{3x}}dx - \int {\left( {\dfrac{{d\cos 3x}}{{dx}}\int {{e^{3x}}dx} } \right)} } dx \\
\Rightarrow I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) - \int {\left( { - 3\sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right)} \right)} dx \;
\]
\[ \Rightarrow I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) + \int {{e^{3x}}\sin 3xdx} \]
\[ \Rightarrow I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) + {I_1}\]- - - - - - - - - (3)
Here, $ {I_1} = {e^{3x}}\sin 3x $
Now, we need to again use integration by parts to find this value. Therefore,
\[
\Rightarrow {I_1} = \int {{e^{3x}}\sin 3x} \\
\Rightarrow {I_1} = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } dx \\
\Rightarrow {I_1} = \sin 3x\int {{e^{3x}}dx - \int {\left( {\dfrac{{d\sin 3x}}{{dx}}\int {{e^{3x}}dx} } \right)} } dx \\
\Rightarrow {I_1} = \sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) - \int {\left( {3\cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right)} \right)} dx \;
\]
\[ \Rightarrow {I_1} = \sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) - \int {{e^{3x}}\cos 3xdx} \]- - - - - - - - - (4)
Now, our question was
$ \Rightarrow I = \int {{e^{3x}} \cdot \cos 3xdx} $
Therefore, equation (4) becomes
\[ \Rightarrow {I_1} = \sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) - I\]
Substituting this in equation (3), we get
\[
\Rightarrow I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) + {I_1} \\
\Rightarrow I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) + \sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) - I \\
\Rightarrow 2I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) + \sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) \\
\Rightarrow 2I = \dfrac{{{e^{3x}}}}{3}\left( {\cos 3x + \sin 3x} \right) \\
\Rightarrow I = \dfrac{{{e^{3x}}}}{6}\left( {\cos 3x + \sin 3x} \right) + c \;
\]
Where, c is integration constant.
Hence, we have found the integral of $ \int {{e^{3x}} \cdot \cos 3xdx} $ .
So, the correct answer is “ $I = \dfrac{{{e^{3x}}}}{6}\left( {\cos 3x + \sin 3x} \right) + c $ ”.
Note: There is also a shortcut method for solving this question. We have a direct formula that is
$ \Rightarrow \int {{e^{ax}}\cos bxdx = \dfrac{{{e^{ax}}}}{{{a^2} + {b^2}}}\left( {a\cos bx + b\sin bx} \right)} + c $
Therefore,
$
\Rightarrow \int {{e^{3x}}\cos 3xdx = \dfrac{{{e^{3x}}}}{{{3^2} + {3^2}}}\left( {3\cos 3x + 3\sin 3x} \right)} + c \\
\Rightarrow \int {{e^{3x}}\cos 3xdx = } \dfrac{{{e^{3x}}}}{{18}} \times 3\left( {\cos 3x + \sin 3x} \right) + c \\
\Rightarrow \int {{e^{3x}}\cos 3xdx = } \dfrac{{{e^{3x}}}}{6}\left( {\cos 3x + \sin 3x} \right) + c \\
$
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 4 Maths: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
