
How do you find the integral of $ {e^{3x}} \cdot \cos 3xdx $ ?
Answer
503.4k+ views
Hint: To find the integral of $ {e^{3x}} \cdot \cos 3xdx $ , we are going to use integration by parts. The formula for integration by parts is
For $ I = \int {uvdx} $ ,
$ \Rightarrow I = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } dx $
Here, the values of u and v are selected on the basis of ILATE rule. We have explained the integration by parts method in detail below.
Complete step by step solution:
In this question, we are given an expression and we need to find its integral. First of all, let this given integral be equal to $ I $.
The given expression is: $ I = {e^{3x}} \cdot \cos 3xdx $ - - - - - - - - - - - - - - - (1)
Integrating equation (1), we get
$ \Rightarrow I = \int {{e^{3x}} \cdot \cos 3xdx} $ - - - - - - - - - - (2)
Here, we can see that the expression in equation (2) is in the form $ I = \int {uvdx} $ . That is we are going to use Bernoulli's rule for integration by parts to find the integral of equation (2).
Bernoulli’s rule for integration by parts for $ I = \int {uvdx} $ is
$ \Rightarrow I = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } dx $
Here, we have to decide the value of u and v based on their order using the ILATE rule. ILATE stands for
I – Inverse trigonometric Functions
L – Log functions
A – Algebraic Functions
T – Trigonometric functions
E – Exponential functions
So, here
$ u = \cos 3x $ and $ v = {e^{3x}} $
Therefore, we get
\[
\Rightarrow I = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } dx \\
\Rightarrow I = \cos 3x\int {{e^{3x}}dx - \int {\left( {\dfrac{{d\cos 3x}}{{dx}}\int {{e^{3x}}dx} } \right)} } dx \\
\Rightarrow I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) - \int {\left( { - 3\sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right)} \right)} dx \;
\]
\[ \Rightarrow I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) + \int {{e^{3x}}\sin 3xdx} \]
\[ \Rightarrow I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) + {I_1}\]- - - - - - - - - (3)
Here, $ {I_1} = {e^{3x}}\sin 3x $
Now, we need to again use integration by parts to find this value. Therefore,
\[
\Rightarrow {I_1} = \int {{e^{3x}}\sin 3x} \\
\Rightarrow {I_1} = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } dx \\
\Rightarrow {I_1} = \sin 3x\int {{e^{3x}}dx - \int {\left( {\dfrac{{d\sin 3x}}{{dx}}\int {{e^{3x}}dx} } \right)} } dx \\
\Rightarrow {I_1} = \sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) - \int {\left( {3\cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right)} \right)} dx \;
\]
\[ \Rightarrow {I_1} = \sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) - \int {{e^{3x}}\cos 3xdx} \]- - - - - - - - - (4)
Now, our question was
$ \Rightarrow I = \int {{e^{3x}} \cdot \cos 3xdx} $
Therefore, equation (4) becomes
\[ \Rightarrow {I_1} = \sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) - I\]
Substituting this in equation (3), we get
\[
\Rightarrow I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) + {I_1} \\
\Rightarrow I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) + \sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) - I \\
\Rightarrow 2I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) + \sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) \\
\Rightarrow 2I = \dfrac{{{e^{3x}}}}{3}\left( {\cos 3x + \sin 3x} \right) \\
\Rightarrow I = \dfrac{{{e^{3x}}}}{6}\left( {\cos 3x + \sin 3x} \right) + c \;
\]
Where, c is integration constant.
Hence, we have found the integral of $ \int {{e^{3x}} \cdot \cos 3xdx} $ .
So, the correct answer is “ $I = \dfrac{{{e^{3x}}}}{6}\left( {\cos 3x + \sin 3x} \right) + c $ ”.
Note: There is also a shortcut method for solving this question. We have a direct formula that is
$ \Rightarrow \int {{e^{ax}}\cos bxdx = \dfrac{{{e^{ax}}}}{{{a^2} + {b^2}}}\left( {a\cos bx + b\sin bx} \right)} + c $
Therefore,
$
\Rightarrow \int {{e^{3x}}\cos 3xdx = \dfrac{{{e^{3x}}}}{{{3^2} + {3^2}}}\left( {3\cos 3x + 3\sin 3x} \right)} + c \\
\Rightarrow \int {{e^{3x}}\cos 3xdx = } \dfrac{{{e^{3x}}}}{{18}} \times 3\left( {\cos 3x + \sin 3x} \right) + c \\
\Rightarrow \int {{e^{3x}}\cos 3xdx = } \dfrac{{{e^{3x}}}}{6}\left( {\cos 3x + \sin 3x} \right) + c \\
$
For $ I = \int {uvdx} $ ,
$ \Rightarrow I = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } dx $
Here, the values of u and v are selected on the basis of ILATE rule. We have explained the integration by parts method in detail below.
Complete step by step solution:
In this question, we are given an expression and we need to find its integral. First of all, let this given integral be equal to $ I $.
The given expression is: $ I = {e^{3x}} \cdot \cos 3xdx $ - - - - - - - - - - - - - - - (1)
Integrating equation (1), we get
$ \Rightarrow I = \int {{e^{3x}} \cdot \cos 3xdx} $ - - - - - - - - - - (2)
Here, we can see that the expression in equation (2) is in the form $ I = \int {uvdx} $ . That is we are going to use Bernoulli's rule for integration by parts to find the integral of equation (2).
Bernoulli’s rule for integration by parts for $ I = \int {uvdx} $ is
$ \Rightarrow I = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } dx $
Here, we have to decide the value of u and v based on their order using the ILATE rule. ILATE stands for
I – Inverse trigonometric Functions
L – Log functions
A – Algebraic Functions
T – Trigonometric functions
E – Exponential functions
So, here
$ u = \cos 3x $ and $ v = {e^{3x}} $
Therefore, we get
\[
\Rightarrow I = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } dx \\
\Rightarrow I = \cos 3x\int {{e^{3x}}dx - \int {\left( {\dfrac{{d\cos 3x}}{{dx}}\int {{e^{3x}}dx} } \right)} } dx \\
\Rightarrow I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) - \int {\left( { - 3\sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right)} \right)} dx \;
\]
\[ \Rightarrow I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) + \int {{e^{3x}}\sin 3xdx} \]
\[ \Rightarrow I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) + {I_1}\]- - - - - - - - - (3)
Here, $ {I_1} = {e^{3x}}\sin 3x $
Now, we need to again use integration by parts to find this value. Therefore,
\[
\Rightarrow {I_1} = \int {{e^{3x}}\sin 3x} \\
\Rightarrow {I_1} = u\int {vdx - \int {\left( {\dfrac{{du}}{{dx}}\int {vdx} } \right)} } dx \\
\Rightarrow {I_1} = \sin 3x\int {{e^{3x}}dx - \int {\left( {\dfrac{{d\sin 3x}}{{dx}}\int {{e^{3x}}dx} } \right)} } dx \\
\Rightarrow {I_1} = \sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) - \int {\left( {3\cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right)} \right)} dx \;
\]
\[ \Rightarrow {I_1} = \sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) - \int {{e^{3x}}\cos 3xdx} \]- - - - - - - - - (4)
Now, our question was
$ \Rightarrow I = \int {{e^{3x}} \cdot \cos 3xdx} $
Therefore, equation (4) becomes
\[ \Rightarrow {I_1} = \sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) - I\]
Substituting this in equation (3), we get
\[
\Rightarrow I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) + {I_1} \\
\Rightarrow I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) + \sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) - I \\
\Rightarrow 2I = \cos 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) + \sin 3x\left( {\dfrac{{{e^{3x}}}}{3}} \right) \\
\Rightarrow 2I = \dfrac{{{e^{3x}}}}{3}\left( {\cos 3x + \sin 3x} \right) \\
\Rightarrow I = \dfrac{{{e^{3x}}}}{6}\left( {\cos 3x + \sin 3x} \right) + c \;
\]
Where, c is integration constant.
Hence, we have found the integral of $ \int {{e^{3x}} \cdot \cos 3xdx} $ .
So, the correct answer is “ $I = \dfrac{{{e^{3x}}}}{6}\left( {\cos 3x + \sin 3x} \right) + c $ ”.
Note: There is also a shortcut method for solving this question. We have a direct formula that is
$ \Rightarrow \int {{e^{ax}}\cos bxdx = \dfrac{{{e^{ax}}}}{{{a^2} + {b^2}}}\left( {a\cos bx + b\sin bx} \right)} + c $
Therefore,
$
\Rightarrow \int {{e^{3x}}\cos 3xdx = \dfrac{{{e^{3x}}}}{{{3^2} + {3^2}}}\left( {3\cos 3x + 3\sin 3x} \right)} + c \\
\Rightarrow \int {{e^{3x}}\cos 3xdx = } \dfrac{{{e^{3x}}}}{{18}} \times 3\left( {\cos 3x + \sin 3x} \right) + c \\
\Rightarrow \int {{e^{3x}}\cos 3xdx = } \dfrac{{{e^{3x}}}}{6}\left( {\cos 3x + \sin 3x} \right) + c \\
$
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

