
How do you find the integral of \[{{\cos }^{-1}}x\left( x \right)\]?
Answer
517.2k+ views
Hint: From the question we have been asked to find the integral of a given inverse trigonometric function. For solving this question we will use the concept of integration and its applications. We use the formulae of integration by parts which is \[\Rightarrow \int{udv=uv-\int{vdu}}\] and we will simplify further using basic mathematical operations like multiplications, addition to solve this question.
Complete step by step answer:
Here let us assume the given expression as follows,
\[I=\int{{{\cos }^{-1}}x\left( x \right)dx}\]
Now we will use the integration by parts formula, which is \[\Rightarrow \int{udv=uv-\int{vdu}}\] to the above equation. so, we get the equation reduced as follows.
\[\Rightarrow I={{\cos }^{-1}}x\int{xdx-\int{\left( \dfrac{d}{dx}\left( {{\cos }^{-1}}x \right)\int{xdx} \right)dx}}\]
Here we use the formulae \[\Rightarrow \int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}\] and \[\Rightarrow \int{{{\cos }^{-1}}x}=\dfrac{-1}{\sqrt{1-{{x}^{2}}}}\]
\[\Rightarrow I={{\cos }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)-\int{\dfrac{-1}{\sqrt{1-{{x}^{2}}}}\times \dfrac{{{x}^{2}}}{2}dx}\]
\[\Rightarrow I={{\cos }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+\dfrac{1}{2}\int{\dfrac{{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}dx}\]
Now we will assume the above equation as follows.
\[\Rightarrow I={{\cos }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+\dfrac{1}{2}{{I}_{1}}\]
Where \[{{I}_{1}}=\int{\dfrac{{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}dx}\]
Now we use the substitution method and substitute \[x=\sin u\]. So, we get the \[dx=\cos udu\] as derivative of \[\dfrac{d}{dx}\sin x=\cos x\].
So, we will take the above equation and substitute the new x values and do the calculation.
So, we get as follows.
\[\Rightarrow {{I}_{1}}=\int{\dfrac{{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}dx}\]
\[\Rightarrow {{I}_{1}}=\int{\dfrac{{{\sin }^{2}}u}{\sqrt{1-{{\sin }^{2}}u}}\cos udu}\]
Here we use the formulae \[\Rightarrow 1-{{\sin }^{2}}x={{\cos }^{2}}x\].
\[\Rightarrow {{I}_{1}}=\int{\dfrac{{{\sin }^{2}}u}{\sqrt{{{\cos }^{2}}u}}\cos udu}\]
\[\Rightarrow {{I}_{1}}=\int{\dfrac{{{\sin }^{2}}u}{\cos u}\cos udu}\]
\[\Rightarrow {{I}_{1}}=\int{{{\sin }^{2}}udu}\]
Here we use the formulae \[\Rightarrow \cos 2x=1-2{{\sin }^{2}}x\].
\[\Rightarrow {{I}_{1}}=\int{\dfrac{1-\cos 2u}{2}du}\]
\[\Rightarrow {{I}_{1}}=\dfrac{1}{2}\left( u-\dfrac{\sin 2u}{2} \right)+c\]
\[\Rightarrow {{I}_{1}}=\dfrac{1}{2}\left( u-\sin u\cos u \right)+c\]
\[\Rightarrow {{I}_{1}}=\dfrac{1}{2}\left( u-\sin u\sqrt{1-{{\sin }^{2}}u} \right)+c\]
Now we will substitute back the values of x we took previously. So, we get the equation reduced as follows.
\[\Rightarrow {{I}_{1}}=\dfrac{1}{2}\left( {{\sin }^{-1}}x-x\sqrt{1-x} \right)+c\]
Now we will take this and substitute in the equation \[\Rightarrow I={{\cos }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+\dfrac{1}{2}{{I}_{1}}\]. So, we get the equation reduced as follows.
\[\Rightarrow I={{\cos }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+\dfrac{1}{2}{{I}_{1}}\]
\[\Rightarrow I={{\cos }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+\dfrac{1}{2}\left( \dfrac{1}{2}\left( {{\sin }^{-1}}x-x\sqrt{1-x} \right)+c \right)\]
\[\Rightarrow I={{\cos }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+\left( \dfrac{1}{4}\left( {{\sin }^{-1}}x-x\sqrt{1-x} \right) \right)+C\]
Note: Students must have good knowledge in the concept of inverse trigonometry and trigonometry and its applications. We must also know the formulae in integrations to solve this question. The formulae we required to solve this question are as follows.
\[\Rightarrow \int{udv=uv-\int{vdu}}\]
\[\Rightarrow \int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}\] and \[\Rightarrow \int{{{\cos }^{-1}}x}=\dfrac{-1}{\sqrt{1-{{x}^{2}}}}\]
\[\Rightarrow 1-{{\sin }^{2}}x={{\cos }^{2}}x\]
\[\Rightarrow \cos 2x=1-2{{\sin }^{2}}x\]
Complete step by step answer:
Here let us assume the given expression as follows,
\[I=\int{{{\cos }^{-1}}x\left( x \right)dx}\]
Now we will use the integration by parts formula, which is \[\Rightarrow \int{udv=uv-\int{vdu}}\] to the above equation. so, we get the equation reduced as follows.
\[\Rightarrow I={{\cos }^{-1}}x\int{xdx-\int{\left( \dfrac{d}{dx}\left( {{\cos }^{-1}}x \right)\int{xdx} \right)dx}}\]
Here we use the formulae \[\Rightarrow \int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}\] and \[\Rightarrow \int{{{\cos }^{-1}}x}=\dfrac{-1}{\sqrt{1-{{x}^{2}}}}\]
\[\Rightarrow I={{\cos }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)-\int{\dfrac{-1}{\sqrt{1-{{x}^{2}}}}\times \dfrac{{{x}^{2}}}{2}dx}\]
\[\Rightarrow I={{\cos }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+\dfrac{1}{2}\int{\dfrac{{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}dx}\]
Now we will assume the above equation as follows.
\[\Rightarrow I={{\cos }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+\dfrac{1}{2}{{I}_{1}}\]
Where \[{{I}_{1}}=\int{\dfrac{{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}dx}\]
Now we use the substitution method and substitute \[x=\sin u\]. So, we get the \[dx=\cos udu\] as derivative of \[\dfrac{d}{dx}\sin x=\cos x\].
So, we will take the above equation and substitute the new x values and do the calculation.
So, we get as follows.
\[\Rightarrow {{I}_{1}}=\int{\dfrac{{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}dx}\]
\[\Rightarrow {{I}_{1}}=\int{\dfrac{{{\sin }^{2}}u}{\sqrt{1-{{\sin }^{2}}u}}\cos udu}\]
Here we use the formulae \[\Rightarrow 1-{{\sin }^{2}}x={{\cos }^{2}}x\].
\[\Rightarrow {{I}_{1}}=\int{\dfrac{{{\sin }^{2}}u}{\sqrt{{{\cos }^{2}}u}}\cos udu}\]
\[\Rightarrow {{I}_{1}}=\int{\dfrac{{{\sin }^{2}}u}{\cos u}\cos udu}\]
\[\Rightarrow {{I}_{1}}=\int{{{\sin }^{2}}udu}\]
Here we use the formulae \[\Rightarrow \cos 2x=1-2{{\sin }^{2}}x\].
\[\Rightarrow {{I}_{1}}=\int{\dfrac{1-\cos 2u}{2}du}\]
\[\Rightarrow {{I}_{1}}=\dfrac{1}{2}\left( u-\dfrac{\sin 2u}{2} \right)+c\]
\[\Rightarrow {{I}_{1}}=\dfrac{1}{2}\left( u-\sin u\cos u \right)+c\]
\[\Rightarrow {{I}_{1}}=\dfrac{1}{2}\left( u-\sin u\sqrt{1-{{\sin }^{2}}u} \right)+c\]
Now we will substitute back the values of x we took previously. So, we get the equation reduced as follows.
\[\Rightarrow {{I}_{1}}=\dfrac{1}{2}\left( {{\sin }^{-1}}x-x\sqrt{1-x} \right)+c\]
Now we will take this and substitute in the equation \[\Rightarrow I={{\cos }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+\dfrac{1}{2}{{I}_{1}}\]. So, we get the equation reduced as follows.
\[\Rightarrow I={{\cos }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+\dfrac{1}{2}{{I}_{1}}\]
\[\Rightarrow I={{\cos }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+\dfrac{1}{2}\left( \dfrac{1}{2}\left( {{\sin }^{-1}}x-x\sqrt{1-x} \right)+c \right)\]
\[\Rightarrow I={{\cos }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+\left( \dfrac{1}{4}\left( {{\sin }^{-1}}x-x\sqrt{1-x} \right) \right)+C\]
Note: Students must have good knowledge in the concept of inverse trigonometry and trigonometry and its applications. We must also know the formulae in integrations to solve this question. The formulae we required to solve this question are as follows.
\[\Rightarrow \int{udv=uv-\int{vdu}}\]
\[\Rightarrow \int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}\] and \[\Rightarrow \int{{{\cos }^{-1}}x}=\dfrac{-1}{\sqrt{1-{{x}^{2}}}}\]
\[\Rightarrow 1-{{\sin }^{2}}x={{\cos }^{2}}x\]
\[\Rightarrow \cos 2x=1-2{{\sin }^{2}}x\]
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

