
How do you find the indefinite integral of \[\int {\sec \dfrac{x}{2}dx} \]?
Answer
546.3k+ views
Hint: In solving the given question, we have to integrate the given function, first multiply and divide with \[\tan \dfrac{x}{2} + \sec \dfrac{x}{2}\], then consider the denominator as a variable i.e.,\[u\], then differentiate both sides, and then further simplification we will get the required result.
Complete step by step solution:
Indefinite integral refers to an integral that does not have any upper and lower limit.
Given function is \[\int {\sec \dfrac{x}{2}dx} \],
Now multiply and divide the given function with \[\tan \dfrac{x}{2} + \sec \dfrac{x}{2}\], we get,
\[ \Rightarrow \int {\sec \dfrac{x}{2}\left( {\dfrac{{\tan \dfrac{x}{2} + \sec \dfrac{x}{2}}}{{\tan \dfrac{x}{2} + \sec \dfrac{x}{2}u}}} \right)dx} \],
Now simplifying by multiplying we get,
\[ \Rightarrow \int {\dfrac{{\sec \dfrac{x}{2}\tan \dfrac{x}{2} + {{\sec }^2}\dfrac{x}{2}}}{{\tan \dfrac{x}{2} + \sec \dfrac{x}{2}u}}dx} \],
Now let us consider \[\tan \dfrac{x}{2} + \sec \dfrac{x}{2} = u\],
Now differentiate both sides we get,
\[ \Rightarrow \dfrac{d}{{dx}}u = \dfrac{d}{{dx}}\left( {\tan \dfrac{x}{2} + \sec \dfrac{x}{2}} \right)\],
Now distributing the differentiation, we get,
\[ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\tan \dfrac{x}{2} + \dfrac{d}{{dx}}\sec \dfrac{x}{2}\],
Now applying derivative formulas we get,
\[ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{2}{\sec ^2}\dfrac{x}{2} + \dfrac{1}{2}\sec \dfrac{x}{2}\tan \dfrac{x}{2}\],
Now take \[dx\]to the right hand side we get,
\[ \Rightarrow 2du = \left( {{{\sec }^2}\dfrac{x}{2} + \sec \dfrac{x}{2}\tan \dfrac{x}{2}} \right)dx\],
Now substituting the values we get,
\[ \Rightarrow \int {\dfrac{{2du}}{u}} \],
Now using the integration formula \[\int {\dfrac{1}{x}dx} = \ln x + c\], we get,
\[ \Rightarrow \int {\dfrac{{2du}}{u}} = 2\ln \left| u \right|\],
We know that \[u = \tan \dfrac{x}{2} + \sec \dfrac{x}{2}\], now substituting the value in the above we get,
\[ \Rightarrow \int {\sec \dfrac{x}{2}} = 2\ln \left| {\tan \dfrac{x}{2} + \sec \dfrac{x}{2}} \right| + C\].
So, the integral for the given function is \[2\ln \left| {\tan \dfrac{x}{2} + \sec \dfrac{x}{2}} \right| + C\].
Final Answer:
\[\therefore \]The integral for the given function \[\int {\sec \dfrac{x}{2}dx} \] will be equal to \[2\ln \left| {\tan \dfrac{x}{2} + \sec \dfrac{x}{2}} \right| + C\].
Note:
An indefinite is an integral that does not contain the upper and lower limit. Indefinite integral is also known as anti-derivative or Prime integral. Indefinite integral of a function f is generally a differentiable function F whose derivative is equal to the original function f. It is represented as,
\[\int {f\left( x \right)dx} = F\left( x \right) + C\],
Some of the important formulas that we use while solving integration problems are given below:
\[\int {dx = x + c} \],
\[\int {adx = ax + c} \],
\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + c\],
\[\int {\dfrac{1}{x}dx} = \ln x + c\],
\[\int {{e^x}dx = {e^x} + c} \],
\[\int {{a^x}dx = \dfrac{{{a^x}}}{{\ln a}} + c} \],
\[\int {\sin xdx = - \cos x + c} \],
\[\int {\cos xdx = \sin x + c} \],
\[\int {{{\sec }^2}xdx = \tan x + c} \],
\[\int {{{\csc }^2}xdx = - \cot x + C} \],
\[\int {\sec x\tan xdx = \sec x + C} \],
\[\int {\csc x\cot xdx = - \csc x + C} \],
\[\int {\dfrac{1}{{\sqrt {1 - {x^2}} }}dx = {{\sin }^{ - 1}}x + c} \],
\[\int {\dfrac{1}{{1 + {x^2}}}dx = {{\tan }^{ - 1}}x + c} \].
Complete step by step solution:
Indefinite integral refers to an integral that does not have any upper and lower limit.
Given function is \[\int {\sec \dfrac{x}{2}dx} \],
Now multiply and divide the given function with \[\tan \dfrac{x}{2} + \sec \dfrac{x}{2}\], we get,
\[ \Rightarrow \int {\sec \dfrac{x}{2}\left( {\dfrac{{\tan \dfrac{x}{2} + \sec \dfrac{x}{2}}}{{\tan \dfrac{x}{2} + \sec \dfrac{x}{2}u}}} \right)dx} \],
Now simplifying by multiplying we get,
\[ \Rightarrow \int {\dfrac{{\sec \dfrac{x}{2}\tan \dfrac{x}{2} + {{\sec }^2}\dfrac{x}{2}}}{{\tan \dfrac{x}{2} + \sec \dfrac{x}{2}u}}dx} \],
Now let us consider \[\tan \dfrac{x}{2} + \sec \dfrac{x}{2} = u\],
Now differentiate both sides we get,
\[ \Rightarrow \dfrac{d}{{dx}}u = \dfrac{d}{{dx}}\left( {\tan \dfrac{x}{2} + \sec \dfrac{x}{2}} \right)\],
Now distributing the differentiation, we get,
\[ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}\tan \dfrac{x}{2} + \dfrac{d}{{dx}}\sec \dfrac{x}{2}\],
Now applying derivative formulas we get,
\[ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{2}{\sec ^2}\dfrac{x}{2} + \dfrac{1}{2}\sec \dfrac{x}{2}\tan \dfrac{x}{2}\],
Now take \[dx\]to the right hand side we get,
\[ \Rightarrow 2du = \left( {{{\sec }^2}\dfrac{x}{2} + \sec \dfrac{x}{2}\tan \dfrac{x}{2}} \right)dx\],
Now substituting the values we get,
\[ \Rightarrow \int {\dfrac{{2du}}{u}} \],
Now using the integration formula \[\int {\dfrac{1}{x}dx} = \ln x + c\], we get,
\[ \Rightarrow \int {\dfrac{{2du}}{u}} = 2\ln \left| u \right|\],
We know that \[u = \tan \dfrac{x}{2} + \sec \dfrac{x}{2}\], now substituting the value in the above we get,
\[ \Rightarrow \int {\sec \dfrac{x}{2}} = 2\ln \left| {\tan \dfrac{x}{2} + \sec \dfrac{x}{2}} \right| + C\].
So, the integral for the given function is \[2\ln \left| {\tan \dfrac{x}{2} + \sec \dfrac{x}{2}} \right| + C\].
Final Answer:
\[\therefore \]The integral for the given function \[\int {\sec \dfrac{x}{2}dx} \] will be equal to \[2\ln \left| {\tan \dfrac{x}{2} + \sec \dfrac{x}{2}} \right| + C\].
Note:
An indefinite is an integral that does not contain the upper and lower limit. Indefinite integral is also known as anti-derivative or Prime integral. Indefinite integral of a function f is generally a differentiable function F whose derivative is equal to the original function f. It is represented as,
\[\int {f\left( x \right)dx} = F\left( x \right) + C\],
Some of the important formulas that we use while solving integration problems are given below:
\[\int {dx = x + c} \],
\[\int {adx = ax + c} \],
\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + c\],
\[\int {\dfrac{1}{x}dx} = \ln x + c\],
\[\int {{e^x}dx = {e^x} + c} \],
\[\int {{a^x}dx = \dfrac{{{a^x}}}{{\ln a}} + c} \],
\[\int {\sin xdx = - \cos x + c} \],
\[\int {\cos xdx = \sin x + c} \],
\[\int {{{\sec }^2}xdx = \tan x + c} \],
\[\int {{{\csc }^2}xdx = - \cot x + C} \],
\[\int {\sec x\tan xdx = \sec x + C} \],
\[\int {\csc x\cot xdx = - \csc x + C} \],
\[\int {\dfrac{1}{{\sqrt {1 - {x^2}} }}dx = {{\sin }^{ - 1}}x + c} \],
\[\int {\dfrac{1}{{1 + {x^2}}}dx = {{\tan }^{ - 1}}x + c} \].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

