
Find the general solution of $\cos 3x = \sin 2x$ .
Answer
510.9k+ views
Hint: Equations involving trigonometric functions of a variable are called trigonometric equations.
The value of the variable (or unknown) which satisfies the trigonometric equations is called solutions.
We know that the values of $\sin x$ and $\cos x$ repeat after an interval of $2\pi $ and the values of $\tan x$ repeat after an interval of $\pi $.
The solutions of a trigonometric equation for which $0 \leqslant x \leqslant 2\pi $ are called principal solutions.
The expression involving integer $'n'$ which gives all solutions of a trigonometric equation is called the general solution.
Always factorize the equation to find the variables.
For $\sin x = 0$gives $x = n\pi $, where $n \in \mathbb{Z}$.
For $\cos x = 0$ gives $x = \left( {2n + 1} \right)\dfrac{\pi }{2}$ , where $n \in \mathbb{Z}$.
In related questions, you might come across the situation like:
$\sin x = \sin \dfrac{\pi }{3}$;
Use the following theorem to simplify:
For any real numbers x and y,
\[\sin x = \sin y \Rightarrow x = n\pi + {\left( { - 1} \right)^n}y,\] where $n \in \mathbb{Z}$.
For $\sin x = \sin \dfrac{\pi }{3}$
$ \Rightarrow x = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{3}$ , where $n \in \mathbb{Z}$.
Complete step-by-step answer:
Step 1: Simplify the given equation:
$\cos 3x = \sin 2x$
Using trigonometric identity:
$
\cos 3x = 4{\cos ^3}x - 3\cos x \\
\sin 2x = 2\sin x\cos x \\
$
The equation becomes:
$
\Rightarrow {\text{ }}4{\cos ^3}x - 3\cos x = 2\sin x\cos x \\
\Rightarrow {\text{ }}4{\cos ^3}x - 3\cos x - 2\sin x\cos x = 0 \\
$
Taking $\cos x$as common
$ \Rightarrow {\text{ }}\cos x\left( {4{{\cos }^2}x - 3 - 2\sin x} \right) = 0$
Using trigonometric identity:
${\cos ^2}x + {\sin ^2}x = 1$
$ \Rightarrow {\cos ^2}x = 1 - {\sin ^2}x$
The equation becomes:
\[
\Rightarrow {\text{ }}\cos x\left[ {4\left( {1 - {{\sin }^2}x} \right) - 3 - 2\sin x} \right] = 0 \\
\Rightarrow {\text{ }}\cos x\left[ {4 - 4{{\sin }^2}x - 3 - 2\sin x} \right] = 0 \\
\]
\[ \Rightarrow {\text{ }}\cos x\left( {1 - 4{{\sin }^2}x - 2\sin x} \right) = 0\] ….. (1)
Step 2: Find the general solutions:
If the product of two numbers is 0, then either the first number or second number of both of them are 0.
Thus, $\cos x = 0$ and/or \[1 - 4{\sin ^2}x - 2\sin x = 0\]
For $\cos x = 0$
Graph: $\cos x$
From the graph we can see that $\cos x = 0$for the odd multiple of $\dfrac{\pi }{2}$
$ \Rightarrow x = \left( {2n + 1} \right)\dfrac{\pi }{2}$ …… (2)
Where $n \in \mathbb{Z}$ . $\mathbb{Z}$is a set of integers.
For n = 0, $x = \dfrac{\pi }{2}$ .
For n = 1, $x = \dfrac{{3\pi }}{2}$
For \[1 - 4{\sin ^2}x - 2\sin x = 0\]
Let \[\sin x = y\]
Therefore, $1 - 4{y^2} - 2y = 0$
Use the discrimination method to solve the quadratic equation in y.
$
a{y^2} + by + c = 0 \\
\Rightarrow y = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} \\
$
$4{y^2} + 2y - 1 = 0$
on comparing with standard quadratic equation:
$
a = 4;b = 2;c = - 1 \\
\Rightarrow y = \dfrac{{ - 2 \pm \sqrt {{2^2} - 4\left( 4 \right)\left( { - 1} \right)} }}{{2\left( 4 \right)}} \\
\Rightarrow y = \dfrac{{ - 2 \pm \sqrt {4 + 16} }}{8} \\
\Rightarrow y = \dfrac{{ - 2 \pm \sqrt {20} }}{8} \\
\Rightarrow y = \dfrac{{ - 2 \pm 2\sqrt 5 }}{8} \\
\Rightarrow y = \dfrac{{ - 1 \pm \sqrt 5 }}{2} \\
$
Thus, $\sin x = \dfrac{{ - 1 \pm \sqrt 5 }}{2}$
Graph: $\sin x$
Range of $y = \sin x = \left[ { - 1,1} \right]$
\[\dfrac{{ - 1 - \sqrt 5 }}{2} \simeq - 1.6 < - 1\]
$ \Rightarrow \sin x \ne \dfrac{{ - 1 - \sqrt 5 }}{2}$
So, $\sin x = \dfrac{{ - 1 + \sqrt 5 }}{2}$
We know, \[\sin 18^\circ = \dfrac{{ - 1 + \sqrt 5 }}{2}\]
$ \Rightarrow \sin x = \sin 18^\circ $
To convert degree into radian:$x = \dfrac{\pi }{{10}}$
We know, $180^\circ = \pi $ radians
Therefore, $1^\circ = \dfrac{\pi }{{180^\circ }}$
So, \[18^\circ = 18^\circ \times \dfrac{\pi }{{180^\circ }}\]
$ \Rightarrow {\text{ }} = {\text{ }}\dfrac{\pi }{{10}}$ radians
Or $\sin x = \sin \dfrac{\pi }{{10}}$
We know, \[\sin x = \sin y \Rightarrow x = n\pi + {\left( { - 1} \right)^n}y,\] where $n \in \mathbb{Z}$. $\mathbb{Z}$is a set of integers.
On comparing, $y = \dfrac{\pi }{{10}}$
$ \Rightarrow x = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{{10}}$ …… (3)
For n = 0,
For n = 1, $x = \dfrac{{9\pi }}{{10}}$
For n =2, $x = \dfrac{{21\pi }}{{10}}$
The general solution of the equation (1) is the union of equation (2) and (3) as both the value of x satisfies the equation (1)
Final answer: Thus, the general solution of $\cos 3x = \sin 2x$ is $x = \left[ {\left\{ {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right\} \cup \left\{ {n\pi + {{\left( { - 1} \right)}^n}\dfrac{\pi }{{10}}} \right\}} \right]$ , where $n \in \mathbb{Z}$.
Note: Similarly for any real numbers x and y,
$\cos x = \cos y \Rightarrow x = 2n\pi \pm y,$ where $n \in \mathbb{Z}$.
$\tan x = \tan y \Rightarrow x = n\pi + y$ , where $n \in \mathbb{Z}$.
Learn trigonometric identities to solve related questions easily.
The value of the variable (or unknown) which satisfies the trigonometric equations is called solutions.
We know that the values of $\sin x$ and $\cos x$ repeat after an interval of $2\pi $ and the values of $\tan x$ repeat after an interval of $\pi $.
The solutions of a trigonometric equation for which $0 \leqslant x \leqslant 2\pi $ are called principal solutions.
The expression involving integer $'n'$ which gives all solutions of a trigonometric equation is called the general solution.
Always factorize the equation to find the variables.
For $\sin x = 0$gives $x = n\pi $, where $n \in \mathbb{Z}$.
For $\cos x = 0$ gives $x = \left( {2n + 1} \right)\dfrac{\pi }{2}$ , where $n \in \mathbb{Z}$.
In related questions, you might come across the situation like:
$\sin x = \sin \dfrac{\pi }{3}$;
Use the following theorem to simplify:
For any real numbers x and y,
\[\sin x = \sin y \Rightarrow x = n\pi + {\left( { - 1} \right)^n}y,\] where $n \in \mathbb{Z}$.
For $\sin x = \sin \dfrac{\pi }{3}$
$ \Rightarrow x = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{3}$ , where $n \in \mathbb{Z}$.
Complete step-by-step answer:
Step 1: Simplify the given equation:
$\cos 3x = \sin 2x$
Using trigonometric identity:
$
\cos 3x = 4{\cos ^3}x - 3\cos x \\
\sin 2x = 2\sin x\cos x \\
$
The equation becomes:
$
\Rightarrow {\text{ }}4{\cos ^3}x - 3\cos x = 2\sin x\cos x \\
\Rightarrow {\text{ }}4{\cos ^3}x - 3\cos x - 2\sin x\cos x = 0 \\
$
Taking $\cos x$as common
$ \Rightarrow {\text{ }}\cos x\left( {4{{\cos }^2}x - 3 - 2\sin x} \right) = 0$
Using trigonometric identity:
${\cos ^2}x + {\sin ^2}x = 1$
$ \Rightarrow {\cos ^2}x = 1 - {\sin ^2}x$
The equation becomes:
\[
\Rightarrow {\text{ }}\cos x\left[ {4\left( {1 - {{\sin }^2}x} \right) - 3 - 2\sin x} \right] = 0 \\
\Rightarrow {\text{ }}\cos x\left[ {4 - 4{{\sin }^2}x - 3 - 2\sin x} \right] = 0 \\
\]
\[ \Rightarrow {\text{ }}\cos x\left( {1 - 4{{\sin }^2}x - 2\sin x} \right) = 0\] ….. (1)
Step 2: Find the general solutions:
If the product of two numbers is 0, then either the first number or second number of both of them are 0.
Thus, $\cos x = 0$ and/or \[1 - 4{\sin ^2}x - 2\sin x = 0\]
For $\cos x = 0$
Graph: $\cos x$
From the graph we can see that $\cos x = 0$for the odd multiple of $\dfrac{\pi }{2}$
$ \Rightarrow x = \left( {2n + 1} \right)\dfrac{\pi }{2}$ …… (2)
Where $n \in \mathbb{Z}$ . $\mathbb{Z}$is a set of integers.
For n = 0, $x = \dfrac{\pi }{2}$ .
For n = 1, $x = \dfrac{{3\pi }}{2}$
For \[1 - 4{\sin ^2}x - 2\sin x = 0\]
Let \[\sin x = y\]
Therefore, $1 - 4{y^2} - 2y = 0$
Use the discrimination method to solve the quadratic equation in y.
$
a{y^2} + by + c = 0 \\
\Rightarrow y = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} \\
$
$4{y^2} + 2y - 1 = 0$
on comparing with standard quadratic equation:
$
a = 4;b = 2;c = - 1 \\
\Rightarrow y = \dfrac{{ - 2 \pm \sqrt {{2^2} - 4\left( 4 \right)\left( { - 1} \right)} }}{{2\left( 4 \right)}} \\
\Rightarrow y = \dfrac{{ - 2 \pm \sqrt {4 + 16} }}{8} \\
\Rightarrow y = \dfrac{{ - 2 \pm \sqrt {20} }}{8} \\
\Rightarrow y = \dfrac{{ - 2 \pm 2\sqrt 5 }}{8} \\
\Rightarrow y = \dfrac{{ - 1 \pm \sqrt 5 }}{2} \\
$
Thus, $\sin x = \dfrac{{ - 1 \pm \sqrt 5 }}{2}$
Graph: $\sin x$
Range of $y = \sin x = \left[ { - 1,1} \right]$
\[\dfrac{{ - 1 - \sqrt 5 }}{2} \simeq - 1.6 < - 1\]
$ \Rightarrow \sin x \ne \dfrac{{ - 1 - \sqrt 5 }}{2}$
So, $\sin x = \dfrac{{ - 1 + \sqrt 5 }}{2}$
We know, \[\sin 18^\circ = \dfrac{{ - 1 + \sqrt 5 }}{2}\]
$ \Rightarrow \sin x = \sin 18^\circ $
To convert degree into radian:$x = \dfrac{\pi }{{10}}$
We know, $180^\circ = \pi $ radians
Therefore, $1^\circ = \dfrac{\pi }{{180^\circ }}$
So, \[18^\circ = 18^\circ \times \dfrac{\pi }{{180^\circ }}\]
$ \Rightarrow {\text{ }} = {\text{ }}\dfrac{\pi }{{10}}$ radians
Or $\sin x = \sin \dfrac{\pi }{{10}}$
We know, \[\sin x = \sin y \Rightarrow x = n\pi + {\left( { - 1} \right)^n}y,\] where $n \in \mathbb{Z}$. $\mathbb{Z}$is a set of integers.
On comparing, $y = \dfrac{\pi }{{10}}$
$ \Rightarrow x = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{{10}}$ …… (3)
For n = 0,
For n = 1, $x = \dfrac{{9\pi }}{{10}}$
For n =2, $x = \dfrac{{21\pi }}{{10}}$
The general solution of the equation (1) is the union of equation (2) and (3) as both the value of x satisfies the equation (1)
Final answer: Thus, the general solution of $\cos 3x = \sin 2x$ is $x = \left[ {\left\{ {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right\} \cup \left\{ {n\pi + {{\left( { - 1} \right)}^n}\dfrac{\pi }{{10}}} \right\}} \right]$ , where $n \in \mathbb{Z}$.
Note: Similarly for any real numbers x and y,
$\cos x = \cos y \Rightarrow x = 2n\pi \pm y,$ where $n \in \mathbb{Z}$.
$\tan x = \tan y \Rightarrow x = n\pi + y$ , where $n \in \mathbb{Z}$.
Learn trigonometric identities to solve related questions easily.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE

What is the function of copulatory pads in the forelimbs class 11 biology CBSE
