
Find the general solution of $\cos 3x = \sin 2x$ .
Answer
580.2k+ views
Hint: Equations involving trigonometric functions of a variable are called trigonometric equations.
The value of the variable (or unknown) which satisfies the trigonometric equations is called solutions.
We know that the values of $\sin x$ and $\cos x$ repeat after an interval of $2\pi $ and the values of $\tan x$ repeat after an interval of $\pi $.
The solutions of a trigonometric equation for which $0 \leqslant x \leqslant 2\pi $ are called principal solutions.
The expression involving integer $'n'$ which gives all solutions of a trigonometric equation is called the general solution.
Always factorize the equation to find the variables.
For $\sin x = 0$gives $x = n\pi $, where $n \in \mathbb{Z}$.
For $\cos x = 0$ gives $x = \left( {2n + 1} \right)\dfrac{\pi }{2}$ , where $n \in \mathbb{Z}$.
In related questions, you might come across the situation like:
$\sin x = \sin \dfrac{\pi }{3}$;
Use the following theorem to simplify:
For any real numbers x and y,
\[\sin x = \sin y \Rightarrow x = n\pi + {\left( { - 1} \right)^n}y,\] where $n \in \mathbb{Z}$.
For $\sin x = \sin \dfrac{\pi }{3}$
$ \Rightarrow x = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{3}$ , where $n \in \mathbb{Z}$.
Complete step-by-step answer:
Step 1: Simplify the given equation:
$\cos 3x = \sin 2x$
Using trigonometric identity:
$
\cos 3x = 4{\cos ^3}x - 3\cos x \\
\sin 2x = 2\sin x\cos x \\
$
The equation becomes:
$
\Rightarrow {\text{ }}4{\cos ^3}x - 3\cos x = 2\sin x\cos x \\
\Rightarrow {\text{ }}4{\cos ^3}x - 3\cos x - 2\sin x\cos x = 0 \\
$
Taking $\cos x$as common
$ \Rightarrow {\text{ }}\cos x\left( {4{{\cos }^2}x - 3 - 2\sin x} \right) = 0$
Using trigonometric identity:
${\cos ^2}x + {\sin ^2}x = 1$
$ \Rightarrow {\cos ^2}x = 1 - {\sin ^2}x$
The equation becomes:
\[
\Rightarrow {\text{ }}\cos x\left[ {4\left( {1 - {{\sin }^2}x} \right) - 3 - 2\sin x} \right] = 0 \\
\Rightarrow {\text{ }}\cos x\left[ {4 - 4{{\sin }^2}x - 3 - 2\sin x} \right] = 0 \\
\]
\[ \Rightarrow {\text{ }}\cos x\left( {1 - 4{{\sin }^2}x - 2\sin x} \right) = 0\] ….. (1)
Step 2: Find the general solutions:
If the product of two numbers is 0, then either the first number or second number of both of them are 0.
Thus, $\cos x = 0$ and/or \[1 - 4{\sin ^2}x - 2\sin x = 0\]
For $\cos x = 0$
Graph: $\cos x$
From the graph we can see that $\cos x = 0$for the odd multiple of $\dfrac{\pi }{2}$
$ \Rightarrow x = \left( {2n + 1} \right)\dfrac{\pi }{2}$ …… (2)
Where $n \in \mathbb{Z}$ . $\mathbb{Z}$is a set of integers.
For n = 0, $x = \dfrac{\pi }{2}$ .
For n = 1, $x = \dfrac{{3\pi }}{2}$
For \[1 - 4{\sin ^2}x - 2\sin x = 0\]
Let \[\sin x = y\]
Therefore, $1 - 4{y^2} - 2y = 0$
Use the discrimination method to solve the quadratic equation in y.
$
a{y^2} + by + c = 0 \\
\Rightarrow y = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} \\
$
$4{y^2} + 2y - 1 = 0$
on comparing with standard quadratic equation:
$
a = 4;b = 2;c = - 1 \\
\Rightarrow y = \dfrac{{ - 2 \pm \sqrt {{2^2} - 4\left( 4 \right)\left( { - 1} \right)} }}{{2\left( 4 \right)}} \\
\Rightarrow y = \dfrac{{ - 2 \pm \sqrt {4 + 16} }}{8} \\
\Rightarrow y = \dfrac{{ - 2 \pm \sqrt {20} }}{8} \\
\Rightarrow y = \dfrac{{ - 2 \pm 2\sqrt 5 }}{8} \\
\Rightarrow y = \dfrac{{ - 1 \pm \sqrt 5 }}{2} \\
$
Thus, $\sin x = \dfrac{{ - 1 \pm \sqrt 5 }}{2}$
Graph: $\sin x$
Range of $y = \sin x = \left[ { - 1,1} \right]$
\[\dfrac{{ - 1 - \sqrt 5 }}{2} \simeq - 1.6 < - 1\]
$ \Rightarrow \sin x \ne \dfrac{{ - 1 - \sqrt 5 }}{2}$
So, $\sin x = \dfrac{{ - 1 + \sqrt 5 }}{2}$
We know, \[\sin 18^\circ = \dfrac{{ - 1 + \sqrt 5 }}{2}\]
$ \Rightarrow \sin x = \sin 18^\circ $
To convert degree into radian:$x = \dfrac{\pi }{{10}}$
We know, $180^\circ = \pi $ radians
Therefore, $1^\circ = \dfrac{\pi }{{180^\circ }}$
So, \[18^\circ = 18^\circ \times \dfrac{\pi }{{180^\circ }}\]
$ \Rightarrow {\text{ }} = {\text{ }}\dfrac{\pi }{{10}}$ radians
Or $\sin x = \sin \dfrac{\pi }{{10}}$
We know, \[\sin x = \sin y \Rightarrow x = n\pi + {\left( { - 1} \right)^n}y,\] where $n \in \mathbb{Z}$. $\mathbb{Z}$is a set of integers.
On comparing, $y = \dfrac{\pi }{{10}}$
$ \Rightarrow x = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{{10}}$ …… (3)
For n = 0,
For n = 1, $x = \dfrac{{9\pi }}{{10}}$
For n =2, $x = \dfrac{{21\pi }}{{10}}$
The general solution of the equation (1) is the union of equation (2) and (3) as both the value of x satisfies the equation (1)
Final answer: Thus, the general solution of $\cos 3x = \sin 2x$ is $x = \left[ {\left\{ {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right\} \cup \left\{ {n\pi + {{\left( { - 1} \right)}^n}\dfrac{\pi }{{10}}} \right\}} \right]$ , where $n \in \mathbb{Z}$.
Note: Similarly for any real numbers x and y,
$\cos x = \cos y \Rightarrow x = 2n\pi \pm y,$ where $n \in \mathbb{Z}$.
$\tan x = \tan y \Rightarrow x = n\pi + y$ , where $n \in \mathbb{Z}$.
Learn trigonometric identities to solve related questions easily.
The value of the variable (or unknown) which satisfies the trigonometric equations is called solutions.
We know that the values of $\sin x$ and $\cos x$ repeat after an interval of $2\pi $ and the values of $\tan x$ repeat after an interval of $\pi $.
The solutions of a trigonometric equation for which $0 \leqslant x \leqslant 2\pi $ are called principal solutions.
The expression involving integer $'n'$ which gives all solutions of a trigonometric equation is called the general solution.
Always factorize the equation to find the variables.
For $\sin x = 0$gives $x = n\pi $, where $n \in \mathbb{Z}$.
For $\cos x = 0$ gives $x = \left( {2n + 1} \right)\dfrac{\pi }{2}$ , where $n \in \mathbb{Z}$.
In related questions, you might come across the situation like:
$\sin x = \sin \dfrac{\pi }{3}$;
Use the following theorem to simplify:
For any real numbers x and y,
\[\sin x = \sin y \Rightarrow x = n\pi + {\left( { - 1} \right)^n}y,\] where $n \in \mathbb{Z}$.
For $\sin x = \sin \dfrac{\pi }{3}$
$ \Rightarrow x = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{3}$ , where $n \in \mathbb{Z}$.
Complete step-by-step answer:
Step 1: Simplify the given equation:
$\cos 3x = \sin 2x$
Using trigonometric identity:
$
\cos 3x = 4{\cos ^3}x - 3\cos x \\
\sin 2x = 2\sin x\cos x \\
$
The equation becomes:
$
\Rightarrow {\text{ }}4{\cos ^3}x - 3\cos x = 2\sin x\cos x \\
\Rightarrow {\text{ }}4{\cos ^3}x - 3\cos x - 2\sin x\cos x = 0 \\
$
Taking $\cos x$as common
$ \Rightarrow {\text{ }}\cos x\left( {4{{\cos }^2}x - 3 - 2\sin x} \right) = 0$
Using trigonometric identity:
${\cos ^2}x + {\sin ^2}x = 1$
$ \Rightarrow {\cos ^2}x = 1 - {\sin ^2}x$
The equation becomes:
\[
\Rightarrow {\text{ }}\cos x\left[ {4\left( {1 - {{\sin }^2}x} \right) - 3 - 2\sin x} \right] = 0 \\
\Rightarrow {\text{ }}\cos x\left[ {4 - 4{{\sin }^2}x - 3 - 2\sin x} \right] = 0 \\
\]
\[ \Rightarrow {\text{ }}\cos x\left( {1 - 4{{\sin }^2}x - 2\sin x} \right) = 0\] ….. (1)
Step 2: Find the general solutions:
If the product of two numbers is 0, then either the first number or second number of both of them are 0.
Thus, $\cos x = 0$ and/or \[1 - 4{\sin ^2}x - 2\sin x = 0\]
For $\cos x = 0$
Graph: $\cos x$
From the graph we can see that $\cos x = 0$for the odd multiple of $\dfrac{\pi }{2}$
$ \Rightarrow x = \left( {2n + 1} \right)\dfrac{\pi }{2}$ …… (2)
Where $n \in \mathbb{Z}$ . $\mathbb{Z}$is a set of integers.
For n = 0, $x = \dfrac{\pi }{2}$ .
For n = 1, $x = \dfrac{{3\pi }}{2}$
For \[1 - 4{\sin ^2}x - 2\sin x = 0\]
Let \[\sin x = y\]
Therefore, $1 - 4{y^2} - 2y = 0$
Use the discrimination method to solve the quadratic equation in y.
$
a{y^2} + by + c = 0 \\
\Rightarrow y = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} \\
$
$4{y^2} + 2y - 1 = 0$
on comparing with standard quadratic equation:
$
a = 4;b = 2;c = - 1 \\
\Rightarrow y = \dfrac{{ - 2 \pm \sqrt {{2^2} - 4\left( 4 \right)\left( { - 1} \right)} }}{{2\left( 4 \right)}} \\
\Rightarrow y = \dfrac{{ - 2 \pm \sqrt {4 + 16} }}{8} \\
\Rightarrow y = \dfrac{{ - 2 \pm \sqrt {20} }}{8} \\
\Rightarrow y = \dfrac{{ - 2 \pm 2\sqrt 5 }}{8} \\
\Rightarrow y = \dfrac{{ - 1 \pm \sqrt 5 }}{2} \\
$
Thus, $\sin x = \dfrac{{ - 1 \pm \sqrt 5 }}{2}$
Graph: $\sin x$
Range of $y = \sin x = \left[ { - 1,1} \right]$
\[\dfrac{{ - 1 - \sqrt 5 }}{2} \simeq - 1.6 < - 1\]
$ \Rightarrow \sin x \ne \dfrac{{ - 1 - \sqrt 5 }}{2}$
So, $\sin x = \dfrac{{ - 1 + \sqrt 5 }}{2}$
We know, \[\sin 18^\circ = \dfrac{{ - 1 + \sqrt 5 }}{2}\]
$ \Rightarrow \sin x = \sin 18^\circ $
To convert degree into radian:$x = \dfrac{\pi }{{10}}$
We know, $180^\circ = \pi $ radians
Therefore, $1^\circ = \dfrac{\pi }{{180^\circ }}$
So, \[18^\circ = 18^\circ \times \dfrac{\pi }{{180^\circ }}\]
$ \Rightarrow {\text{ }} = {\text{ }}\dfrac{\pi }{{10}}$ radians
Or $\sin x = \sin \dfrac{\pi }{{10}}$
We know, \[\sin x = \sin y \Rightarrow x = n\pi + {\left( { - 1} \right)^n}y,\] where $n \in \mathbb{Z}$. $\mathbb{Z}$is a set of integers.
On comparing, $y = \dfrac{\pi }{{10}}$
$ \Rightarrow x = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{{10}}$ …… (3)
For n = 0,
For n = 1, $x = \dfrac{{9\pi }}{{10}}$
For n =2, $x = \dfrac{{21\pi }}{{10}}$
The general solution of the equation (1) is the union of equation (2) and (3) as both the value of x satisfies the equation (1)
Final answer: Thus, the general solution of $\cos 3x = \sin 2x$ is $x = \left[ {\left\{ {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right\} \cup \left\{ {n\pi + {{\left( { - 1} \right)}^n}\dfrac{\pi }{{10}}} \right\}} \right]$ , where $n \in \mathbb{Z}$.
Note: Similarly for any real numbers x and y,
$\cos x = \cos y \Rightarrow x = 2n\pi \pm y,$ where $n \in \mathbb{Z}$.
$\tan x = \tan y \Rightarrow x = n\pi + y$ , where $n \in \mathbb{Z}$.
Learn trigonometric identities to solve related questions easily.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

