
Find the general solution:
\[\cos 3x + \cos x - \cos 2x = 0\]
Answer
578.4k+ views
Hint: We can start the problem with analyzing \[cos\left( {3x} \right) = cos\left( {x{\text{ }} + {\text{ }}2x} \right)\]. Then using that formula \[\cos (a + b) = \cos a\cos b - \sin a\sin b\] we can simplify and then, we substitute the value in\[\cos 3x + \cos x - \cos 2x = 0\], and then on further simplification, we get the solution.
Complete step by step Answer:
We are to find a general solution of, \[\cos 3x + \cos x - \cos 2x = 0\]
we start with,
\[cos\left( {3x} \right) = cos\left( {x{\text{ }} + {\text{ }}2x} \right)\]
Now, as, \[\cos (a + b) = \cos a\cos b - \sin a\sin b\]
\[ = {\text{ }}cos\left( x \right)cos\left( {2x} \right){\text{ }} - {\text{ }}sin\left( x \right)sin\left( {2x} \right)\]
As, \[\cos 2x = 2{\cos ^2}x - 1\]and \[\sin 2x = 2\sin x\cos x\], we get,
\[ = cos(x)(2co{s^2}(x) - 1) - 2si{n^2}(x)cos(x)\]
Now, on simplifying, and using \[1 - {\cos ^2}x = {\sin ^2}x\] we get,
\[ = 2co{s^3}(x) - cos(x) - 2cos(x)(1 - co{s^2}(x))\]
On adding like terms we get,
\[ = 4co{s^3}(x) - 3cos(x)\]
Therefore \[cos\left( {3x} \right){\text{ }} + {\text{ }}cos\left( x \right){\text{ }} - {\text{ }}cos\left( {2x} \right){\text{ }} = {\text{ }}0\]can also be written as
\[4co{s^3}(x) - 3cos(x) + cos(x) - 2co{s^2}(x) + 1 = 0\]
On adding the like terms we get,
\[ \Rightarrow 4co{s^3}(x) - 2co{s^2}(x) - 2cos(x) + 1 = 0\]
On taking terms common we get,
\[ \Rightarrow 2{\cos ^2}x(2cos(x) - 1) - 1(2cos(x) - 1) = 0\]
\[ \Rightarrow (2co{s^2}(x) - 1)(2cos(x) - 1) = 0\]
Thus we can say that \[2co{s^2}(x) = 1\]or \[2cos\left( x \right){\text{ }} = {\text{ }}1\]
Hence \[cos\left( x \right){\text{ }} = {\text{ }}\dfrac{1}{{\sqrt 2 }}\]or \[cos\left( x \right){\text{ }} = {\text{ - }}\dfrac{1}{{\sqrt 2 }}\]or \[cos\left( x \right){\text{ }} = {\text{ }}\dfrac{1}{2}\]
Hence \[x{\text{ }} = {\text{ }}45^\circ {\text{ }}or{\text{ }}135^\circ {\text{ }}or{\text{ }}225^\circ {\text{ }}or{\text{ }}315\]°
OR \[x{\text{ }} = {\text{ }}60^\circ {\text{ }}or{\text{ }}300^\circ \].
Note: The general solution of the equation should be stated as the solution in the range of \[ - 360^\circ \]to \[360^\circ \]. We will consider the values as general values if they are inside that given range. Otherwise, the decision is not general. We should consider all the possible cases and solve for all of them.
Complete step by step Answer:
We are to find a general solution of, \[\cos 3x + \cos x - \cos 2x = 0\]
we start with,
\[cos\left( {3x} \right) = cos\left( {x{\text{ }} + {\text{ }}2x} \right)\]
Now, as, \[\cos (a + b) = \cos a\cos b - \sin a\sin b\]
\[ = {\text{ }}cos\left( x \right)cos\left( {2x} \right){\text{ }} - {\text{ }}sin\left( x \right)sin\left( {2x} \right)\]
As, \[\cos 2x = 2{\cos ^2}x - 1\]and \[\sin 2x = 2\sin x\cos x\], we get,
\[ = cos(x)(2co{s^2}(x) - 1) - 2si{n^2}(x)cos(x)\]
Now, on simplifying, and using \[1 - {\cos ^2}x = {\sin ^2}x\] we get,
\[ = 2co{s^3}(x) - cos(x) - 2cos(x)(1 - co{s^2}(x))\]
On adding like terms we get,
\[ = 4co{s^3}(x) - 3cos(x)\]
Therefore \[cos\left( {3x} \right){\text{ }} + {\text{ }}cos\left( x \right){\text{ }} - {\text{ }}cos\left( {2x} \right){\text{ }} = {\text{ }}0\]can also be written as
\[4co{s^3}(x) - 3cos(x) + cos(x) - 2co{s^2}(x) + 1 = 0\]
On adding the like terms we get,
\[ \Rightarrow 4co{s^3}(x) - 2co{s^2}(x) - 2cos(x) + 1 = 0\]
On taking terms common we get,
\[ \Rightarrow 2{\cos ^2}x(2cos(x) - 1) - 1(2cos(x) - 1) = 0\]
\[ \Rightarrow (2co{s^2}(x) - 1)(2cos(x) - 1) = 0\]
Thus we can say that \[2co{s^2}(x) = 1\]or \[2cos\left( x \right){\text{ }} = {\text{ }}1\]
Hence \[cos\left( x \right){\text{ }} = {\text{ }}\dfrac{1}{{\sqrt 2 }}\]or \[cos\left( x \right){\text{ }} = {\text{ - }}\dfrac{1}{{\sqrt 2 }}\]or \[cos\left( x \right){\text{ }} = {\text{ }}\dfrac{1}{2}\]
Hence \[x{\text{ }} = {\text{ }}45^\circ {\text{ }}or{\text{ }}135^\circ {\text{ }}or{\text{ }}225^\circ {\text{ }}or{\text{ }}315\]°
OR \[x{\text{ }} = {\text{ }}60^\circ {\text{ }}or{\text{ }}300^\circ \].
Note: The general solution of the equation should be stated as the solution in the range of \[ - 360^\circ \]to \[360^\circ \]. We will consider the values as general values if they are inside that given range. Otherwise, the decision is not general. We should consider all the possible cases and solve for all of them.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

