
Find the general solution:
\[\cos 3x + \cos x - \cos 2x = 0\]
Answer
578.4k+ views
Hint: We can start the problem with analyzing \[cos\left( {3x} \right) = cos\left( {x{\text{ }} + {\text{ }}2x} \right)\]. Then using that formula \[\cos (a + b) = \cos a\cos b - \sin a\sin b\] we can simplify and then, we substitute the value in\[\cos 3x + \cos x - \cos 2x = 0\], and then on further simplification, we get the solution.
Complete step by step Answer:
We are to find a general solution of, \[\cos 3x + \cos x - \cos 2x = 0\]
we start with,
\[cos\left( {3x} \right) = cos\left( {x{\text{ }} + {\text{ }}2x} \right)\]
Now, as, \[\cos (a + b) = \cos a\cos b - \sin a\sin b\]
\[ = {\text{ }}cos\left( x \right)cos\left( {2x} \right){\text{ }} - {\text{ }}sin\left( x \right)sin\left( {2x} \right)\]
As, \[\cos 2x = 2{\cos ^2}x - 1\]and \[\sin 2x = 2\sin x\cos x\], we get,
\[ = cos(x)(2co{s^2}(x) - 1) - 2si{n^2}(x)cos(x)\]
Now, on simplifying, and using \[1 - {\cos ^2}x = {\sin ^2}x\] we get,
\[ = 2co{s^3}(x) - cos(x) - 2cos(x)(1 - co{s^2}(x))\]
On adding like terms we get,
\[ = 4co{s^3}(x) - 3cos(x)\]
Therefore \[cos\left( {3x} \right){\text{ }} + {\text{ }}cos\left( x \right){\text{ }} - {\text{ }}cos\left( {2x} \right){\text{ }} = {\text{ }}0\]can also be written as
\[4co{s^3}(x) - 3cos(x) + cos(x) - 2co{s^2}(x) + 1 = 0\]
On adding the like terms we get,
\[ \Rightarrow 4co{s^3}(x) - 2co{s^2}(x) - 2cos(x) + 1 = 0\]
On taking terms common we get,
\[ \Rightarrow 2{\cos ^2}x(2cos(x) - 1) - 1(2cos(x) - 1) = 0\]
\[ \Rightarrow (2co{s^2}(x) - 1)(2cos(x) - 1) = 0\]
Thus we can say that \[2co{s^2}(x) = 1\]or \[2cos\left( x \right){\text{ }} = {\text{ }}1\]
Hence \[cos\left( x \right){\text{ }} = {\text{ }}\dfrac{1}{{\sqrt 2 }}\]or \[cos\left( x \right){\text{ }} = {\text{ - }}\dfrac{1}{{\sqrt 2 }}\]or \[cos\left( x \right){\text{ }} = {\text{ }}\dfrac{1}{2}\]
Hence \[x{\text{ }} = {\text{ }}45^\circ {\text{ }}or{\text{ }}135^\circ {\text{ }}or{\text{ }}225^\circ {\text{ }}or{\text{ }}315\]°
OR \[x{\text{ }} = {\text{ }}60^\circ {\text{ }}or{\text{ }}300^\circ \].
Note: The general solution of the equation should be stated as the solution in the range of \[ - 360^\circ \]to \[360^\circ \]. We will consider the values as general values if they are inside that given range. Otherwise, the decision is not general. We should consider all the possible cases and solve for all of them.
Complete step by step Answer:
We are to find a general solution of, \[\cos 3x + \cos x - \cos 2x = 0\]
we start with,
\[cos\left( {3x} \right) = cos\left( {x{\text{ }} + {\text{ }}2x} \right)\]
Now, as, \[\cos (a + b) = \cos a\cos b - \sin a\sin b\]
\[ = {\text{ }}cos\left( x \right)cos\left( {2x} \right){\text{ }} - {\text{ }}sin\left( x \right)sin\left( {2x} \right)\]
As, \[\cos 2x = 2{\cos ^2}x - 1\]and \[\sin 2x = 2\sin x\cos x\], we get,
\[ = cos(x)(2co{s^2}(x) - 1) - 2si{n^2}(x)cos(x)\]
Now, on simplifying, and using \[1 - {\cos ^2}x = {\sin ^2}x\] we get,
\[ = 2co{s^3}(x) - cos(x) - 2cos(x)(1 - co{s^2}(x))\]
On adding like terms we get,
\[ = 4co{s^3}(x) - 3cos(x)\]
Therefore \[cos\left( {3x} \right){\text{ }} + {\text{ }}cos\left( x \right){\text{ }} - {\text{ }}cos\left( {2x} \right){\text{ }} = {\text{ }}0\]can also be written as
\[4co{s^3}(x) - 3cos(x) + cos(x) - 2co{s^2}(x) + 1 = 0\]
On adding the like terms we get,
\[ \Rightarrow 4co{s^3}(x) - 2co{s^2}(x) - 2cos(x) + 1 = 0\]
On taking terms common we get,
\[ \Rightarrow 2{\cos ^2}x(2cos(x) - 1) - 1(2cos(x) - 1) = 0\]
\[ \Rightarrow (2co{s^2}(x) - 1)(2cos(x) - 1) = 0\]
Thus we can say that \[2co{s^2}(x) = 1\]or \[2cos\left( x \right){\text{ }} = {\text{ }}1\]
Hence \[cos\left( x \right){\text{ }} = {\text{ }}\dfrac{1}{{\sqrt 2 }}\]or \[cos\left( x \right){\text{ }} = {\text{ - }}\dfrac{1}{{\sqrt 2 }}\]or \[cos\left( x \right){\text{ }} = {\text{ }}\dfrac{1}{2}\]
Hence \[x{\text{ }} = {\text{ }}45^\circ {\text{ }}or{\text{ }}135^\circ {\text{ }}or{\text{ }}225^\circ {\text{ }}or{\text{ }}315\]°
OR \[x{\text{ }} = {\text{ }}60^\circ {\text{ }}or{\text{ }}300^\circ \].
Note: The general solution of the equation should be stated as the solution in the range of \[ - 360^\circ \]to \[360^\circ \]. We will consider the values as general values if they are inside that given range. Otherwise, the decision is not general. We should consider all the possible cases and solve for all of them.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

