
Find the following integral
$\int{\dfrac{1}{x\left( {{x}^{n}}-1 \right)}dx}$
[a] $\dfrac{1}{n}\ln \left| \dfrac{{{x}^{n}}}{{{x}^{n}}+1} \right|+C$
[b] $\dfrac{1}{n}\ln \left| \dfrac{{{x}^{n}}-1}{{{x}^{n}}} \right|+C$
Answer
604.8k+ views
Hint: Multiply numerator and denominator by ${{x}^{n-1}}$ and put $t={{x}^{n}}$. Use the fact that $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$ and hence prove that the given integral is equal to $\dfrac{1}{n}\int{\dfrac{1}{t\left( t-1 \right)}dt}$. Convert $\dfrac{1}{t\left( t-1 \right)}$ into partial fractions and use the fact that integral is linear, i.e. $\int{\left( f\left( x \right)+g\left( x \right) \right)dx}=\int{f\left( x \right)dx}+\int{g\left( x \right)dx}$. Hence evaluate the given integral. Verify your solution.
Complete step-by-step answer:
Let $I=\int{\dfrac{dx}{x\left( {{x}^{n}}-1 \right)}}$
Multiplying numerator and denominator of the integrand by ${{x}^{n-1}}$, we get
$I=\int{\dfrac{{{x}^{n-1}}dx}{{{x}^{n}}\left( {{x}^{n}}-1 \right)}}$
Put $t={{x}^{n}}$
Differentiating both sides with respect to x, we get
$\dfrac{dt}{dx}=n{{x}^{n-1}}$
Hence, we have $dt=n{{x}^{n-1}}dx$
Dividing both sides by n, we get
$\dfrac{dt}{n}={{x}^{n-1}}dx$
Hence, we have
$I=\int{\dfrac{dt}{nt\left( t-1 \right)}}$
We know that $\int{af\left( x \right)dx}=a\int{f\left( x \right)dx}$, where a is a scalar.
Hence, we have
$I=\dfrac{1}{n}\int{\dfrac{dt}{t\left( t-1 \right)}}$
We will convert $\dfrac{1}{t\left( t-1 \right)}$ into partial fractions.
So let $\dfrac{1}{t\left( t-1 \right)}=\dfrac{A}{t}+\dfrac{B}{t-1}$
Multiplying both sides by $t\left( t-1 \right)$, we get
$1=A\left( t-1 \right)+Bt$
Put t= 0, we get
$A\left( -1 \right)=1\Rightarrow A=-1$
Put t = 1, we get
$1=A\left( 1-1 \right)+B\Rightarrow B=1$
Hence, we have
$\dfrac{1}{t\left( t-1 \right)}=\dfrac{-1}{t}+\dfrac{1}{t-1}$
Hence the integral becomes
$I=\dfrac{1}{n}\int{\left( \dfrac{-1}{t}+\dfrac{1}{t-1} \right)dt}$
Using linearity of integration, i.e. $\int{\left( f\left( x \right)+g\left( x \right) \right)dx}=\int{f\left( x \right)dx}+\int{g\left( x \right)dx}$, we get
$I=\dfrac{-1}{n}\int{\dfrac{dt}{t}}+\dfrac{1}{n}\int{\dfrac{dt}{t-1}}$
We know that $\int{\dfrac{dx}{ax+b}}=\dfrac{1}{a}\ln \left| ax+b \right|+C$
Hence, we have
$I=-\dfrac{1}{n}\ln \left| t \right|+\dfrac{1}{n}\ln \left| t-1 \right|+C$, where C is the constant of integration.
Taking $\dfrac{1}{n}$ common, we get
$I=\dfrac{1}{n}\left( \ln \left| t-1 \right|-\ln \left| t \right| \right)+C$
We know that $\ln m-\ln n=\ln \dfrac{m}{n}$. Hence, we have
$I=\dfrac{1}{n}\ln \left| \dfrac{t-1}{t} \right|+C$
Reverting to the original variable, we get
$I=\dfrac{1}{n}\ln \left| \dfrac{{{x}^{n}}-1}{{{x}^{n}}} \right|+C$, which is the required result.
Hence option [b] is correct.
Note: Verification:
In questions where the integrand is not too complicated, it is often a good practice to verify the correctness of the solution by checking that the derivative of the integral is equal to the integrand.
In this case, we have
$I=\dfrac{1}{n}\ln \left| {{x}^{n}}-1 \right|-\dfrac{1}{n}\ln \left| {{x}^{n}} \right|+C$
Differentiating both sides, we get
$\dfrac{dI}{dx}=\dfrac{1}{n}\times \dfrac{1}{{{x}^{n}}-1}\times \dfrac{d}{dx}\left( {{x}^{n}}-1 \right)-\dfrac{1}{n}\times \dfrac{1}{{{x}^{n}}}\times \dfrac{d}{dx}\left( {{x}^{n}} \right)$
Hence, we have
$\begin{align}
& \dfrac{dI}{dx}=\dfrac{1}{n}\times \dfrac{1}{{{x}^{n}}-1}\left( n{{x}^{n-1}} \right)-\dfrac{1}{n}\times \dfrac{1}{{{x}^{n}}}\times n{{x}^{n-1}} \\
& =\dfrac{{{x}^{n-1}}}{{{x}^{n}}-1}-\dfrac{{{x}^{n-1}}}{{{x}^{n}}} \\
\end{align}$
Taking ${{x}^{n-1}}$ common, we get
$\dfrac{dI}{dx}={{x}^{n-1}}\times \left( \dfrac{1}{{{x}^{n}}-1}-\dfrac{1}{{{x}^{n}}} \right)=\dfrac{{{x}^{n-1}}}{{{x}^{n}}\left( {{x}^{n}}-1 \right)}\left( {{x}^{n}}-{{x}^{n}}+1 \right)=\dfrac{1}{x\left( {{x}^{n}}-1 \right)}$
Hence the derivative of the integral is equal to the integrand. Hence our solution is verified to be correct.
Complete step-by-step answer:
Let $I=\int{\dfrac{dx}{x\left( {{x}^{n}}-1 \right)}}$
Multiplying numerator and denominator of the integrand by ${{x}^{n-1}}$, we get
$I=\int{\dfrac{{{x}^{n-1}}dx}{{{x}^{n}}\left( {{x}^{n}}-1 \right)}}$
Put $t={{x}^{n}}$
Differentiating both sides with respect to x, we get
$\dfrac{dt}{dx}=n{{x}^{n-1}}$
Hence, we have $dt=n{{x}^{n-1}}dx$
Dividing both sides by n, we get
$\dfrac{dt}{n}={{x}^{n-1}}dx$
Hence, we have
$I=\int{\dfrac{dt}{nt\left( t-1 \right)}}$
We know that $\int{af\left( x \right)dx}=a\int{f\left( x \right)dx}$, where a is a scalar.
Hence, we have
$I=\dfrac{1}{n}\int{\dfrac{dt}{t\left( t-1 \right)}}$
We will convert $\dfrac{1}{t\left( t-1 \right)}$ into partial fractions.
So let $\dfrac{1}{t\left( t-1 \right)}=\dfrac{A}{t}+\dfrac{B}{t-1}$
Multiplying both sides by $t\left( t-1 \right)$, we get
$1=A\left( t-1 \right)+Bt$
Put t= 0, we get
$A\left( -1 \right)=1\Rightarrow A=-1$
Put t = 1, we get
$1=A\left( 1-1 \right)+B\Rightarrow B=1$
Hence, we have
$\dfrac{1}{t\left( t-1 \right)}=\dfrac{-1}{t}+\dfrac{1}{t-1}$
Hence the integral becomes
$I=\dfrac{1}{n}\int{\left( \dfrac{-1}{t}+\dfrac{1}{t-1} \right)dt}$
Using linearity of integration, i.e. $\int{\left( f\left( x \right)+g\left( x \right) \right)dx}=\int{f\left( x \right)dx}+\int{g\left( x \right)dx}$, we get
$I=\dfrac{-1}{n}\int{\dfrac{dt}{t}}+\dfrac{1}{n}\int{\dfrac{dt}{t-1}}$
We know that $\int{\dfrac{dx}{ax+b}}=\dfrac{1}{a}\ln \left| ax+b \right|+C$
Hence, we have
$I=-\dfrac{1}{n}\ln \left| t \right|+\dfrac{1}{n}\ln \left| t-1 \right|+C$, where C is the constant of integration.
Taking $\dfrac{1}{n}$ common, we get
$I=\dfrac{1}{n}\left( \ln \left| t-1 \right|-\ln \left| t \right| \right)+C$
We know that $\ln m-\ln n=\ln \dfrac{m}{n}$. Hence, we have
$I=\dfrac{1}{n}\ln \left| \dfrac{t-1}{t} \right|+C$
Reverting to the original variable, we get
$I=\dfrac{1}{n}\ln \left| \dfrac{{{x}^{n}}-1}{{{x}^{n}}} \right|+C$, which is the required result.
Hence option [b] is correct.
Note: Verification:
In questions where the integrand is not too complicated, it is often a good practice to verify the correctness of the solution by checking that the derivative of the integral is equal to the integrand.
In this case, we have
$I=\dfrac{1}{n}\ln \left| {{x}^{n}}-1 \right|-\dfrac{1}{n}\ln \left| {{x}^{n}} \right|+C$
Differentiating both sides, we get
$\dfrac{dI}{dx}=\dfrac{1}{n}\times \dfrac{1}{{{x}^{n}}-1}\times \dfrac{d}{dx}\left( {{x}^{n}}-1 \right)-\dfrac{1}{n}\times \dfrac{1}{{{x}^{n}}}\times \dfrac{d}{dx}\left( {{x}^{n}} \right)$
Hence, we have
$\begin{align}
& \dfrac{dI}{dx}=\dfrac{1}{n}\times \dfrac{1}{{{x}^{n}}-1}\left( n{{x}^{n-1}} \right)-\dfrac{1}{n}\times \dfrac{1}{{{x}^{n}}}\times n{{x}^{n-1}} \\
& =\dfrac{{{x}^{n-1}}}{{{x}^{n}}-1}-\dfrac{{{x}^{n-1}}}{{{x}^{n}}} \\
\end{align}$
Taking ${{x}^{n-1}}$ common, we get
$\dfrac{dI}{dx}={{x}^{n-1}}\times \left( \dfrac{1}{{{x}^{n}}-1}-\dfrac{1}{{{x}^{n}}} \right)=\dfrac{{{x}^{n-1}}}{{{x}^{n}}\left( {{x}^{n}}-1 \right)}\left( {{x}^{n}}-{{x}^{n}}+1 \right)=\dfrac{1}{x\left( {{x}^{n}}-1 \right)}$
Hence the derivative of the integral is equal to the integrand. Hence our solution is verified to be correct.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

