
Find the Factors of ${x^4} - {x^2} - 12$.
Answer
567.9k+ views
Hint:
Assume ${x^2}$ to be t then the equation will be ${t^2} - t - 12$ for factoring we will split -1 in such that multiplication of 2 terms will be equal to -12. ${t^2} - t - 12$ will be equal to $\left( {t - 4} \right)\left( {t + 3} \right)$. Substitute t= ${x^2}$ then we can see the $\left( {{x^2} - 4} \right)$ can be further factories on $\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)$. Then we will get$\left( {{x^2} - 4} \right) = \left( {x - 2} \right)\left( {x + 2} \right)$.
Complete step by step solution:
Given, ${x^4} - {x^2} - 12$
Assume ${x^2}$= t equation will be
$ \Rightarrow {t^2} - t - 12$
split -1 in such that multiplication of 2 terms will be equal to -12
$ \Rightarrow {t^2} - 4t + 3t - 12$
Taking common t and 3
$ \Rightarrow t\left( {t - 4} \right) + 3\left( {t - 4} \right)$
Now taking common $\left( {t - 4} \right)$
$ \Rightarrow \left( {t - 4} \right)\left( {t + 3} \right)$
Then substitute ${x^2}$= t
$ \Rightarrow \left( {{x^2} - 4} \right)\left( {{x^2} + 3} \right)$
It is known that $\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)$ then $\left( {{x^2} - 4} \right) = \left( {x - 2} \right)\left( {x + 2} \right)$
$ \Rightarrow \left( {x - 2} \right)\left( {x + 2} \right)\left( {{x^2} + 3} \right)$
Note:
If $a{x^2} + bx + c$ is a quadratic equation then $\left( {x - h} \right)\left( {x - r} \right)$ then $h + r = \dfrac{{ - b}}{a}$ and $h \times r = \dfrac{{ - c}}{a}$. formula used $\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)$.
Assume ${x^2}$ to be t then the equation will be ${t^2} - t - 12$ for factoring we will split -1 in such that multiplication of 2 terms will be equal to -12. ${t^2} - t - 12$ will be equal to $\left( {t - 4} \right)\left( {t + 3} \right)$. Substitute t= ${x^2}$ then we can see the $\left( {{x^2} - 4} \right)$ can be further factories on $\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)$. Then we will get$\left( {{x^2} - 4} \right) = \left( {x - 2} \right)\left( {x + 2} \right)$.
Complete step by step solution:
Given, ${x^4} - {x^2} - 12$
Assume ${x^2}$= t equation will be
$ \Rightarrow {t^2} - t - 12$
split -1 in such that multiplication of 2 terms will be equal to -12
$ \Rightarrow {t^2} - 4t + 3t - 12$
Taking common t and 3
$ \Rightarrow t\left( {t - 4} \right) + 3\left( {t - 4} \right)$
Now taking common $\left( {t - 4} \right)$
$ \Rightarrow \left( {t - 4} \right)\left( {t + 3} \right)$
Then substitute ${x^2}$= t
$ \Rightarrow \left( {{x^2} - 4} \right)\left( {{x^2} + 3} \right)$
It is known that $\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)$ then $\left( {{x^2} - 4} \right) = \left( {x - 2} \right)\left( {x + 2} \right)$
$ \Rightarrow \left( {x - 2} \right)\left( {x + 2} \right)\left( {{x^2} + 3} \right)$
Note:
If $a{x^2} + bx + c$ is a quadratic equation then $\left( {x - h} \right)\left( {x - r} \right)$ then $h + r = \dfrac{{ - b}}{a}$ and $h \times r = \dfrac{{ - c}}{a}$. formula used $\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)$.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Who is eligible for RTE class 9 social science CBSE

What is the Full Form of ISI and RAW

How do you find the valency of chlorine sulphur and class 9 chemistry CBSE

What are the major achievements of the UNO class 9 social science CBSE

Explain the importance of pH in everyday life class 9 chemistry CBSE

Differentiate between parenchyma collenchyma and sclerenchyma class 9 biology CBSE

