
Find the factors of ${{a}^{4}}\left( {{b}^{2}}-{{c}^{2}} \right)+{{b}^{4}}\left( {{c}^{2}}-{{a}^{2}} \right)+{{c}^{4}}\left( {{a}^{2}}-{{b}^{2}} \right).$
Answer
578.7k+ views
Hint: For factorising the above expression, split the middle term as sum or difference of other two terms and use the identity $''{{x}^{2}}-{{y}^{2}}=\left( x-y \right)\left( x+y \right)''$ for further factorization. Split ${{b}^{4}}\left( {{c}^{2}}-{{a}^{2}} \right)=-{{b}^{4}}\left[ \left( {{b}^{2}}-{{c}^{2}} \right)+\left( {{a}^{2}}-{{b}^{2}} \right) \right]$ and further factorise the obtained algebraic expression.
Complete step-by-step answer:
The given equation \[{{a}^{4}}\left( {{b}^{2}}-{{c}^{2}} \right)+{{b}^{4}}\left( {{c}^{2}}-{{a}^{2}} \right)+{{c}^{4}}\left( {{a}^{2}}-{{b}^{2}} \right)\].
Let us split the middle term ${{b}^{4}}\left( {{c}^{2}}-{{a}^{2}} \right)={{b}^{4}}\left[ -\left( \left( {{b}^{2}}-{{c}^{2}} \right)+\left( {{a}^{2}}-{{b}^{2}} \right) \right) \right]$
$\begin{align}
& \left[ -\left( \left( {{b}^{2}}-{{c}^{2}} \right)+\left( {{a}^{2}}-{{b}^{2}} \right) \right) \right]=\left[ -\left({{{b}^{2}}}-{{c}^{2}}+{{a}^{2}}-{{{b}^{2}}} \right) \right] \\
& =\left[ -\left( {{a}^{2}}-{{c}^{2}} \right) \right] \\
& \Rightarrow \left[ -\left( \left( {{b}^{2}}-{{c}^{2}} \right)+\left( {{a}^{2}}-{{b}^{2}} \right) \right) \right]={{c}^{2}}-{{a}^{2}} \\
\end{align}$
Splitting the middle term and writing ${{c}^{2}}-{{a}^{2}}=\left[ -\left( \left( {{b}^{2}}-{{c}^{2}} \right)+\left( {{a}^{2}}-{{b}^{2}} \right) \right) \right]$, we will get, $\begin{align}
& {{a}^{4}}\left( {{b}^{2}}-{{c}^{2}} \right)+{{b}^{4}}\left( {{c}^{2}}-{{a}^{2}} \right)+{{c}^{4}}\left( {{a}^{2}}-{{b}^{2}} \right)={{a}^{4}}\left( {{b}^{2}}-{{c}^{2}} \right)+{{b}^{4}}\left[ -\left( {{b}^{2}}-{{c}^{2}} \right)+\left( {{a}^{2}}-{{b}^{2}} \right) \right]+{{c}^{4}}\left( {{a}^{2}}-{{b}^{2}} \right) \\
& ={{a}^{4}}\left( {{b}^{2}}-{{c}^{2}} \right)-{{b}^{4}}\left( \left( {{b}^{2}}-{{c}^{2}} \right)+\left( {{a}^{2}}-{{b}^{2}} \right)+{{c}^{4}}\left( {{a}^{2}}-{{b}^{2}} \right) \right) \\
& ={{a}^{4}}\left( {{b}^{2}}-{{c}^{2}} \right)-{{b}^{4}}\left( {{b}^{2}}-{{c}^{2}} \right)-{{b}^{4}}\left( {{a}^{2}}-{{b}^{2}} \right)+{{c}^{4}}\left( {{a}^{2}}-{{b}^{2}} \right) \\
\end{align}$Taking $\left( {{b}^{2}}-{{c}^{2}} \right)$ common from first two terms and $\left( {{a}^{2}}-{{b}^{2}} \right)$ common from last two terms, we will get;
$\begin{align}
& {{a}^{4}}\left( {{b}^{2}}-{{c}^{2}} \right)+{{b}^{4}}\left( {{c}^{2}}-{{a}^{2}} \right)+{{c}^{4}}\left( {{a}^{2}}-{{b}^{2}} \right)=\left( {{b}^{2}}-{{c}^{2}} \right)\left( {{a}^{4}}-{{b}^{4}} \right)+\left( {{a}^{2}}-{{b}^{2}} \right)\left( {{c}^{4}}-{{b}^{4}} \right) \\
& =\left( {{b}^{2}}-{{c}^{2}} \right)\left( {{a}^{4}}-{{b}^{4}} \right)-\left( {{a}^{2}}-{{b}^{2}} \right)\left( {{b}^{4}}-{{c}^{4}} \right) \\
\end{align}$
We know that${{x}^{2}}-{{y}^{2}}=\left( x-y \right)\left( x+y \right)$.
$\Rightarrow \left( {{b}^{4}}-{{c}^{4}} \right)={{\left( {{b}^{2}} \right)}^{2}}-{{\left( {{c}^{2}} \right)}^{2}}$
$=\left( {{b}^{2}}-{{c}^{2}} \right)\left( {{b}^{2}}+{{c}^{2}} \right)$
Replacing $\left( {{b}^{4}}-{{c}^{4}} \right)=\left( {{b}^{2}}-{{c}^{2}} \right)\left( {{b}^{2}}+{{c}^{2}} \right)$ in the last term of RHS, we will get;
${{a}^{4}}\left( {{b}^{2}}-{{c}^{2}} \right)+{{b}^{4}}\left( {{c}^{2}}-{{a}^{2}} \right)+{{c}^{4}}\left( {{a}^{2}}-{{b}^{2}} \right)=\left( {{b}^{2}}-{{c}^{2}} \right)\left( {{a}^{4}}-{{b}^{4}} \right)-\left( {{a}^{2}}-{{b}^{2}} \right)\left( {{b}^{2}}-{{c}^{2}} \right)\left( {{b}^{2}}+{{c}^{2}} \right)$
Similarly, ${{a}^{4}}-{{b}^{4}}=\left( {{a}^{2}}-{{b}^{2}} \right)\left( {{a}^{2}}+{{b}^{2}} \right)$
Replacing ${{a}^{4}}-{{b}^{4}}=\left( {{a}^{2}}-{{b}^{2}} \right)\left( {{a}^{2}}+{{b}^{2}} \right)$ in RHS, we will get;
${{a}^{4}}\left( {{b}^{2}}-{{c}^{2}} \right)+{{b}^{4}}\left( {{c}^{2}}-{{a}^{2}} \right)+{{c}^{4}}\left( {{a}^{2}}-{{b}^{2}} \right)=\left( {{b}^{2}}-{{c}^{2}} \right)\left( {{a}^{2}}-{{b}^{2}} \right)\left( {{a}^{2}}+{{b}^{2}} \right)-\left( {{a}^{2}}-{{b}^{2}} \right)\left( {{b}^{2}}-{{c}^{2}} \right)\left( {{b}^{2}}+{{c}^{2}} \right)$ Taking $\left( {{a}^{2}}-{{b}^{2}} \right)\left( {{b}^{2}}-{{c}^{2}} \right)$ common from both the terms in RHS, we will get;
$\begin{align}
& {{a}^{4}}\left( {{b}^{2}}-{{c}^{2}} \right)+{{b}^{4}}\left( {{c}^{2}}-{{a}^{2}} \right)+{{c}^{4}}\left( {{a}^{2}}-{{b}^{2}} \right)=\left( {{b}^{2}}-{{c}^{2}} \right)\left( {{a}^{2}}-{{b}^{2}} \right)\left[ \left( {{a}^{2}}+{{b}^{2}} \right)-\left( {{b}^{2}}+{{c}^{2}} \right) \right] \\
& \Rightarrow {{a}^{4}}\left( {{b}^{2}}-{{c}^{2}} \right)+{{b}^{4}}\left( {{c}^{2}}-{{a}^{2}} \right)+{{c}^{4}}\left( {{a}^{2}}-{{b}^{2}} \right)=\left( {{b}^{2}}-{{c}^{2}} \right)\left( {{a}^{2}}-{{b}^{2}} \right)\left[ {{a}^{2}}+{{{b}^{2}}}-{{{b}^{2}}}-{{c}^{2}} \right] \\
& =\left( {{b}^{2}}-{{c}^{2}} \right)\left( {{a}^{2}}-{{b}^{2}} \right)\left( {{a}^{2}}-{{c}^{2}} \right) \\
\end{align}$
As we know $\left( {{x}^{2}}-{{y}^{2}} \right)=\left( x-y \right)\left( x+y \right)$,
$\begin{align}
& \left( {{b}^{2}}-{{c}^{2}} \right)=\left( b-c \right)\left( b+c \right)\ and \\
& \left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)\ and \\
& \left( {{a}^{2}}-{{c}^{2}} \right)=\left( a-c \right)\left( a+c \right) \\
\end{align}$
Using these in above equation, we will get;
${{a}^{4}}\left( {{b}^{2}}-{{c}^{2}} \right)+{{b}^{4}}\left( {{c}^{2}}-{{a}^{2}} \right)+{{c}^{4}}\left( {{a}^{2}}-{{b}^{2}} \right)=\left( b-c \right)\left( b+c \right)\left( a-b \right)\left( a+b \right)\left( a-c \right)\left( a+c \right)$
Hence, ${{a}^{4}}\left( {{b}^{2}}-{{c}^{2}} \right)+{{b}^{4}}\left( {{c}^{2}}-{{a}^{2}} \right)+{{c}^{4}}\left( {{a}^{2}}-{{b}^{2}} \right)$ can be factorised into $\left( b-c \right)\left( b+c \right)\left( a-b \right)\left( a+b \right)\left( a-c \right)\left( a+c \right)$.
Note:Students can do mistake by initially expanding the expression by multiplying ${{a}^{4}},{{b}^{4}}\ and\ {{c}^{4}}$ with their corresponding terms and then factorising. After expanding, you will get a biquadratic expression whose factorisation will be tough. So, middle term splitting is the best method that can be used here.
Complete step-by-step answer:
The given equation \[{{a}^{4}}\left( {{b}^{2}}-{{c}^{2}} \right)+{{b}^{4}}\left( {{c}^{2}}-{{a}^{2}} \right)+{{c}^{4}}\left( {{a}^{2}}-{{b}^{2}} \right)\].
Let us split the middle term ${{b}^{4}}\left( {{c}^{2}}-{{a}^{2}} \right)={{b}^{4}}\left[ -\left( \left( {{b}^{2}}-{{c}^{2}} \right)+\left( {{a}^{2}}-{{b}^{2}} \right) \right) \right]$
$\begin{align}
& \left[ -\left( \left( {{b}^{2}}-{{c}^{2}} \right)+\left( {{a}^{2}}-{{b}^{2}} \right) \right) \right]=\left[ -\left({{{b}^{2}}}-{{c}^{2}}+{{a}^{2}}-{{{b}^{2}}} \right) \right] \\
& =\left[ -\left( {{a}^{2}}-{{c}^{2}} \right) \right] \\
& \Rightarrow \left[ -\left( \left( {{b}^{2}}-{{c}^{2}} \right)+\left( {{a}^{2}}-{{b}^{2}} \right) \right) \right]={{c}^{2}}-{{a}^{2}} \\
\end{align}$
Splitting the middle term and writing ${{c}^{2}}-{{a}^{2}}=\left[ -\left( \left( {{b}^{2}}-{{c}^{2}} \right)+\left( {{a}^{2}}-{{b}^{2}} \right) \right) \right]$, we will get, $\begin{align}
& {{a}^{4}}\left( {{b}^{2}}-{{c}^{2}} \right)+{{b}^{4}}\left( {{c}^{2}}-{{a}^{2}} \right)+{{c}^{4}}\left( {{a}^{2}}-{{b}^{2}} \right)={{a}^{4}}\left( {{b}^{2}}-{{c}^{2}} \right)+{{b}^{4}}\left[ -\left( {{b}^{2}}-{{c}^{2}} \right)+\left( {{a}^{2}}-{{b}^{2}} \right) \right]+{{c}^{4}}\left( {{a}^{2}}-{{b}^{2}} \right) \\
& ={{a}^{4}}\left( {{b}^{2}}-{{c}^{2}} \right)-{{b}^{4}}\left( \left( {{b}^{2}}-{{c}^{2}} \right)+\left( {{a}^{2}}-{{b}^{2}} \right)+{{c}^{4}}\left( {{a}^{2}}-{{b}^{2}} \right) \right) \\
& ={{a}^{4}}\left( {{b}^{2}}-{{c}^{2}} \right)-{{b}^{4}}\left( {{b}^{2}}-{{c}^{2}} \right)-{{b}^{4}}\left( {{a}^{2}}-{{b}^{2}} \right)+{{c}^{4}}\left( {{a}^{2}}-{{b}^{2}} \right) \\
\end{align}$Taking $\left( {{b}^{2}}-{{c}^{2}} \right)$ common from first two terms and $\left( {{a}^{2}}-{{b}^{2}} \right)$ common from last two terms, we will get;
$\begin{align}
& {{a}^{4}}\left( {{b}^{2}}-{{c}^{2}} \right)+{{b}^{4}}\left( {{c}^{2}}-{{a}^{2}} \right)+{{c}^{4}}\left( {{a}^{2}}-{{b}^{2}} \right)=\left( {{b}^{2}}-{{c}^{2}} \right)\left( {{a}^{4}}-{{b}^{4}} \right)+\left( {{a}^{2}}-{{b}^{2}} \right)\left( {{c}^{4}}-{{b}^{4}} \right) \\
& =\left( {{b}^{2}}-{{c}^{2}} \right)\left( {{a}^{4}}-{{b}^{4}} \right)-\left( {{a}^{2}}-{{b}^{2}} \right)\left( {{b}^{4}}-{{c}^{4}} \right) \\
\end{align}$
We know that${{x}^{2}}-{{y}^{2}}=\left( x-y \right)\left( x+y \right)$.
$\Rightarrow \left( {{b}^{4}}-{{c}^{4}} \right)={{\left( {{b}^{2}} \right)}^{2}}-{{\left( {{c}^{2}} \right)}^{2}}$
$=\left( {{b}^{2}}-{{c}^{2}} \right)\left( {{b}^{2}}+{{c}^{2}} \right)$
Replacing $\left( {{b}^{4}}-{{c}^{4}} \right)=\left( {{b}^{2}}-{{c}^{2}} \right)\left( {{b}^{2}}+{{c}^{2}} \right)$ in the last term of RHS, we will get;
${{a}^{4}}\left( {{b}^{2}}-{{c}^{2}} \right)+{{b}^{4}}\left( {{c}^{2}}-{{a}^{2}} \right)+{{c}^{4}}\left( {{a}^{2}}-{{b}^{2}} \right)=\left( {{b}^{2}}-{{c}^{2}} \right)\left( {{a}^{4}}-{{b}^{4}} \right)-\left( {{a}^{2}}-{{b}^{2}} \right)\left( {{b}^{2}}-{{c}^{2}} \right)\left( {{b}^{2}}+{{c}^{2}} \right)$
Similarly, ${{a}^{4}}-{{b}^{4}}=\left( {{a}^{2}}-{{b}^{2}} \right)\left( {{a}^{2}}+{{b}^{2}} \right)$
Replacing ${{a}^{4}}-{{b}^{4}}=\left( {{a}^{2}}-{{b}^{2}} \right)\left( {{a}^{2}}+{{b}^{2}} \right)$ in RHS, we will get;
${{a}^{4}}\left( {{b}^{2}}-{{c}^{2}} \right)+{{b}^{4}}\left( {{c}^{2}}-{{a}^{2}} \right)+{{c}^{4}}\left( {{a}^{2}}-{{b}^{2}} \right)=\left( {{b}^{2}}-{{c}^{2}} \right)\left( {{a}^{2}}-{{b}^{2}} \right)\left( {{a}^{2}}+{{b}^{2}} \right)-\left( {{a}^{2}}-{{b}^{2}} \right)\left( {{b}^{2}}-{{c}^{2}} \right)\left( {{b}^{2}}+{{c}^{2}} \right)$ Taking $\left( {{a}^{2}}-{{b}^{2}} \right)\left( {{b}^{2}}-{{c}^{2}} \right)$ common from both the terms in RHS, we will get;
$\begin{align}
& {{a}^{4}}\left( {{b}^{2}}-{{c}^{2}} \right)+{{b}^{4}}\left( {{c}^{2}}-{{a}^{2}} \right)+{{c}^{4}}\left( {{a}^{2}}-{{b}^{2}} \right)=\left( {{b}^{2}}-{{c}^{2}} \right)\left( {{a}^{2}}-{{b}^{2}} \right)\left[ \left( {{a}^{2}}+{{b}^{2}} \right)-\left( {{b}^{2}}+{{c}^{2}} \right) \right] \\
& \Rightarrow {{a}^{4}}\left( {{b}^{2}}-{{c}^{2}} \right)+{{b}^{4}}\left( {{c}^{2}}-{{a}^{2}} \right)+{{c}^{4}}\left( {{a}^{2}}-{{b}^{2}} \right)=\left( {{b}^{2}}-{{c}^{2}} \right)\left( {{a}^{2}}-{{b}^{2}} \right)\left[ {{a}^{2}}+{{{b}^{2}}}-{{{b}^{2}}}-{{c}^{2}} \right] \\
& =\left( {{b}^{2}}-{{c}^{2}} \right)\left( {{a}^{2}}-{{b}^{2}} \right)\left( {{a}^{2}}-{{c}^{2}} \right) \\
\end{align}$
As we know $\left( {{x}^{2}}-{{y}^{2}} \right)=\left( x-y \right)\left( x+y \right)$,
$\begin{align}
& \left( {{b}^{2}}-{{c}^{2}} \right)=\left( b-c \right)\left( b+c \right)\ and \\
& \left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)\ and \\
& \left( {{a}^{2}}-{{c}^{2}} \right)=\left( a-c \right)\left( a+c \right) \\
\end{align}$
Using these in above equation, we will get;
${{a}^{4}}\left( {{b}^{2}}-{{c}^{2}} \right)+{{b}^{4}}\left( {{c}^{2}}-{{a}^{2}} \right)+{{c}^{4}}\left( {{a}^{2}}-{{b}^{2}} \right)=\left( b-c \right)\left( b+c \right)\left( a-b \right)\left( a+b \right)\left( a-c \right)\left( a+c \right)$
Hence, ${{a}^{4}}\left( {{b}^{2}}-{{c}^{2}} \right)+{{b}^{4}}\left( {{c}^{2}}-{{a}^{2}} \right)+{{c}^{4}}\left( {{a}^{2}}-{{b}^{2}} \right)$ can be factorised into $\left( b-c \right)\left( b+c \right)\left( a-b \right)\left( a+b \right)\left( a-c \right)\left( a+c \right)$.
Note:Students can do mistake by initially expanding the expression by multiplying ${{a}^{4}},{{b}^{4}}\ and\ {{c}^{4}}$ with their corresponding terms and then factorising. After expanding, you will get a biquadratic expression whose factorisation will be tough. So, middle term splitting is the best method that can be used here.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is the Full Form of ISI and RAW

What is pollution? How many types of pollution? Define it

