
Find the exponent of 7 in ${}^{100}{{c}_{50}}$.
A. 0
B. 1
C. 2
D. 3
Answer
580.2k+ views
Hint: We first find exponent of 7 in 100! We then find exponent of 7 in 50! Then we find exponent of 7 in ${}^{100}{{c}_{50}}$. We are only using 100! and 50! Because ${}^{100}{{c}_{50}}=\dfrac{100!}{\left( 100-50 \right)!50!}=\dfrac{100!}{50!50!}$ which contains 100! and 50!
Complete step by step solution: Before proceeding to the solution, we must remember a very basic formula from binomial theorem which is:
${}^{n}{{c}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}$
We also know the formula to find the exponent of a prime in n! which is :
The exponent of a prime ‘p’ in n! is the largest integer k such that ${{p}^{k}}$divides n!
The exponent of p in n! is given by
\[=\left[ \dfrac{n}{p} \right]+\left[ \dfrac{n}{{{p}^{2}}} \right]+\left[ \dfrac{n}{{{p}^{3}}} \right]+\ldots \ldots \ldots \]
According to the above formula,
Exponent of 7 in 100! is :
\[=\left[ \dfrac{100}{7} \right]+\left[ \dfrac{100}{{{7}^{2}}} \right]+\left[ \dfrac{100}{{{7}^{3}}} \right]+\ldots \ldots \ldots \]
$=14+2+0+0+\ldots \ldots \ldots 0$
$=16$
{Where; x is greatest integer function less than or equal to x
Now we find the exponent of 7 in 50! which is
\[=\left[ \dfrac{50}{7} \right]+\left[ \dfrac{50}{{{7}^{2}}} \right]+\left[ \dfrac{50}{{{7}^{3}}} \right]+\ldots \ldots \ldots \]
$=7+1+0+0+\ldots \ldots \ldots $
$=8$
Exponent of 7 in ${}^{100}{{c}_{50}}=\dfrac{100!}{50!50!}=\dfrac{\text{Exp}\ \text{of}\ 7\ \text{in}\ 100!}{\left( \text{Exp}\ \text{of}\ 7\ \text{in}\ 50! \right)}$is
$=\dfrac{{{7}^{16}}}{{{7}^{8}}{{7}^{8}}}=\dfrac{{{7}^{16}}}{{{7}^{8+8}}}=\dfrac{{{7}^{16}}}{{{7}^{16}}}={{7}^{0}}=1$.
Exponent of 7 in ${}^{100}{{c}_{50}}$ is 1.
Correct option (B).
Note: The exponent of p in n! is given by
\[=\left[ \dfrac{n}{p} \right]+\left[ \dfrac{n}{{{p}^{2}}} \right]+\left[ \dfrac{n}{{{p}^{3}}} \right]+\ldots \ldots \ldots \]
This is the direct formula we used to find exponent of a prime in n!
You must also remember one expansion which is very handy in some problems:
${{\left( x+y \right)}^{n}}={}^{n}{{c}_{0}}{{x}^{n}}{{y}^{0}}+{}^{n}{{c}_{1}}{{x}^{n-1}}{{y}^{1}}+{}^{n}{{c}_{2}}{{x}^{n-2}}{{y}^{2}}+\ldots \ldots \ldots +{}^{n}{{c}_{r}}{{x}^{n-r}}{{y}^{r}}+\ldots \ldots \ldots $
general term
$\ldots \ldots \ldots +{}^{n}{{c}_{r}}{{x}^{0}}{{y}^{n}}$
Complete step by step solution: Before proceeding to the solution, we must remember a very basic formula from binomial theorem which is:
${}^{n}{{c}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}$
We also know the formula to find the exponent of a prime in n! which is :
The exponent of a prime ‘p’ in n! is the largest integer k such that ${{p}^{k}}$divides n!
The exponent of p in n! is given by
\[=\left[ \dfrac{n}{p} \right]+\left[ \dfrac{n}{{{p}^{2}}} \right]+\left[ \dfrac{n}{{{p}^{3}}} \right]+\ldots \ldots \ldots \]
According to the above formula,
Exponent of 7 in 100! is :
\[=\left[ \dfrac{100}{7} \right]+\left[ \dfrac{100}{{{7}^{2}}} \right]+\left[ \dfrac{100}{{{7}^{3}}} \right]+\ldots \ldots \ldots \]
$=14+2+0+0+\ldots \ldots \ldots 0$
$=16$
{Where; x is greatest integer function less than or equal to x
Now we find the exponent of 7 in 50! which is
\[=\left[ \dfrac{50}{7} \right]+\left[ \dfrac{50}{{{7}^{2}}} \right]+\left[ \dfrac{50}{{{7}^{3}}} \right]+\ldots \ldots \ldots \]
$=7+1+0+0+\ldots \ldots \ldots $
$=8$
Exponent of 7 in ${}^{100}{{c}_{50}}=\dfrac{100!}{50!50!}=\dfrac{\text{Exp}\ \text{of}\ 7\ \text{in}\ 100!}{\left( \text{Exp}\ \text{of}\ 7\ \text{in}\ 50! \right)}$is
$=\dfrac{{{7}^{16}}}{{{7}^{8}}{{7}^{8}}}=\dfrac{{{7}^{16}}}{{{7}^{8+8}}}=\dfrac{{{7}^{16}}}{{{7}^{16}}}={{7}^{0}}=1$.
Exponent of 7 in ${}^{100}{{c}_{50}}$ is 1.
Correct option (B).
Note: The exponent of p in n! is given by
\[=\left[ \dfrac{n}{p} \right]+\left[ \dfrac{n}{{{p}^{2}}} \right]+\left[ \dfrac{n}{{{p}^{3}}} \right]+\ldots \ldots \ldots \]
This is the direct formula we used to find exponent of a prime in n!
You must also remember one expansion which is very handy in some problems:
${{\left( x+y \right)}^{n}}={}^{n}{{c}_{0}}{{x}^{n}}{{y}^{0}}+{}^{n}{{c}_{1}}{{x}^{n-1}}{{y}^{1}}+{}^{n}{{c}_{2}}{{x}^{n-2}}{{y}^{2}}+\ldots \ldots \ldots +{}^{n}{{c}_{r}}{{x}^{n-r}}{{y}^{r}}+\ldots \ldots \ldots $
general term
$\ldots \ldots \ldots +{}^{n}{{c}_{r}}{{x}^{0}}{{y}^{n}}$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

