
Find the expansion of ${{\left( 2a-3b \right)}^{3}}$ :
(a) $8{{a}^{3}}-27{{b}^{3}}-36{{a}^{2}}b-54a{{b}^{2}}$
(b) $8{{a}^{3}}+27{{b}^{3}}-36{{a}^{2}}b+54a{{b}^{2}}$
(c) $8{{a}^{3}}-27{{b}^{3}}+36{{a}^{2}}b+54a{{b}^{2}}$
(d) $8{{a}^{3}}-27{{b}^{3}}-36{{a}^{2}}b+54a{{b}^{2}}$
Answer
596.4k+ views
Hint: Apply the binomial expansion of ${{\left( a-b \right)}^{3}}$ that you get by using the general expansion of ${{\left( a-b \right)}^{n}}$. Finally, replace ‘a‘ by 2a and ‘b’ by 3b to get the expansion of ${{\left( 2a-3b \right)}^{3}}$.
Complete step-by-step solution -
We know that the binomial expansion of ${{\left( a-b \right)}^{n}}$ , can be written as:
${{\left( a-b \right)}^{n}}={{\text{ }}^{n}}{{\text{C}}_{0}}{{a}^{n}}{{b}^{0}}{{-}^{n}}{{\text{C}}_{1}}{{a}^{n-1}}{{b}^{1}}{{+}^{n}}{{\text{C}}_{2}}{{a}^{n-2}}{{b}^{2}}-.........{{+}^{n}}{{\text{C}}_{n}}{{a}^{0}}{{\left( -b \right)}^{n}}$
Therefore, if we take n to be 3, the binomial expansion of ${{\left( a-b \right)}^{3}}$ is:
${{\left( a-b \right)}^{3}}={{\text{ }}^{3}}{{\text{C}}_{0}}{{a}^{3}}{{b}^{0}}{{-}^{3}}{{\text{C}}_{1}}{{a}^{2}}{{b}^{1}}{{+}^{3}}{{\text{C}}_{2}}{{a}^{1}}{{b}^{2}}{{-}^{3}}{{\text{C}}_{3}}{{a}^{0}}{{b}^{3}}$
Now, if we replace ‘a’ by 2a and ‘b’ by 3b, in the above expansion, we will end up getting the expansion of ${{\left( 2a-3b \right)}^{3}}$ .
$\therefore {{\left( 2a-3b \right)}^{3}}={{\text{ }}^{3}}{{\text{C}}_{0}}{{(2a)}^{3}}{{(3b)}^{0}}{{-}^{3}}{{\text{C}}_{1}}{{(2a)}^{2}}{{(3b)}^{1}}{{+}^{3}}{{\text{C}}_{2}}{{(2a)}^{1}}{{(3b)}^{2}}{{-}^{3}}{{\text{C}}_{3}}{{(2a)}^{0}}{{(3b)}^{3}}$
$\Rightarrow {{\left( a-b \right)}^{3}}=\text{ 8}{{\times }^{3}}{{\text{C}}_{0}}{{a}^{3}}{{b}^{0}}-12{{\times }^{3}}{{\text{C}}_{1}}{{a}^{2}}{{b}^{1}}+18{{\times }^{3}}{{\text{C}}_{2}}{{a}^{1}}{{b}^{2}}-27{{\times }^{3}}{{\text{C}}_{3}}{{a}^{0}}{{b}^{3}}$
Now we know that $^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ . Therefore, our equation becomes:
${{\left( a-b \right)}^{3}}=\text{ 8}\times \dfrac{3!}{3!0!}{{a}^{3}}{{b}^{0}}-12\times \dfrac{3!}{2!1!}{{a}^{2}}{{b}^{1}}+18\times \dfrac{3!}{2!1!}{{a}^{1}}{{b}^{2}}-27\times \dfrac{3!}{3!0!}{{a}^{0}}{{b}^{3}}$
We also know that 0! Is equal to 1.
$\therefore {{\left( a-b \right)}^{3}}=\text{ 8}{{a}^{3}}-36{{a}^{2}}{{b}^{1}}+54{{a}^{1}}{{b}^{2}}-27{{b}^{3}}$
Therefore, we can conclude that the answer to the above question is option (d).
Note: Always be careful with the signs that appear in the expansions, as the students are generally finding signs to be a concern while using the binomial expansions. Also, be careful about the calculation part, as in general cases, the questions involving binomial expansion contain very long and complex calculations due to the presence of factorial terms. You should also know that the binomial coefficient and actual coefficients might or might not be the same. For example: in the expansion of ${{\left( 1+3x \right)}^{3}}$ , the binomial coefficient of ${{x}^{3}}$ is $^{3}{{C}_{3}}=1$ and coefficient is 27.
Complete step-by-step solution -
We know that the binomial expansion of ${{\left( a-b \right)}^{n}}$ , can be written as:
${{\left( a-b \right)}^{n}}={{\text{ }}^{n}}{{\text{C}}_{0}}{{a}^{n}}{{b}^{0}}{{-}^{n}}{{\text{C}}_{1}}{{a}^{n-1}}{{b}^{1}}{{+}^{n}}{{\text{C}}_{2}}{{a}^{n-2}}{{b}^{2}}-.........{{+}^{n}}{{\text{C}}_{n}}{{a}^{0}}{{\left( -b \right)}^{n}}$
Therefore, if we take n to be 3, the binomial expansion of ${{\left( a-b \right)}^{3}}$ is:
${{\left( a-b \right)}^{3}}={{\text{ }}^{3}}{{\text{C}}_{0}}{{a}^{3}}{{b}^{0}}{{-}^{3}}{{\text{C}}_{1}}{{a}^{2}}{{b}^{1}}{{+}^{3}}{{\text{C}}_{2}}{{a}^{1}}{{b}^{2}}{{-}^{3}}{{\text{C}}_{3}}{{a}^{0}}{{b}^{3}}$
Now, if we replace ‘a’ by 2a and ‘b’ by 3b, in the above expansion, we will end up getting the expansion of ${{\left( 2a-3b \right)}^{3}}$ .
$\therefore {{\left( 2a-3b \right)}^{3}}={{\text{ }}^{3}}{{\text{C}}_{0}}{{(2a)}^{3}}{{(3b)}^{0}}{{-}^{3}}{{\text{C}}_{1}}{{(2a)}^{2}}{{(3b)}^{1}}{{+}^{3}}{{\text{C}}_{2}}{{(2a)}^{1}}{{(3b)}^{2}}{{-}^{3}}{{\text{C}}_{3}}{{(2a)}^{0}}{{(3b)}^{3}}$
$\Rightarrow {{\left( a-b \right)}^{3}}=\text{ 8}{{\times }^{3}}{{\text{C}}_{0}}{{a}^{3}}{{b}^{0}}-12{{\times }^{3}}{{\text{C}}_{1}}{{a}^{2}}{{b}^{1}}+18{{\times }^{3}}{{\text{C}}_{2}}{{a}^{1}}{{b}^{2}}-27{{\times }^{3}}{{\text{C}}_{3}}{{a}^{0}}{{b}^{3}}$
Now we know that $^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ . Therefore, our equation becomes:
${{\left( a-b \right)}^{3}}=\text{ 8}\times \dfrac{3!}{3!0!}{{a}^{3}}{{b}^{0}}-12\times \dfrac{3!}{2!1!}{{a}^{2}}{{b}^{1}}+18\times \dfrac{3!}{2!1!}{{a}^{1}}{{b}^{2}}-27\times \dfrac{3!}{3!0!}{{a}^{0}}{{b}^{3}}$
We also know that 0! Is equal to 1.
$\therefore {{\left( a-b \right)}^{3}}=\text{ 8}{{a}^{3}}-36{{a}^{2}}{{b}^{1}}+54{{a}^{1}}{{b}^{2}}-27{{b}^{3}}$
Therefore, we can conclude that the answer to the above question is option (d).
Note: Always be careful with the signs that appear in the expansions, as the students are generally finding signs to be a concern while using the binomial expansions. Also, be careful about the calculation part, as in general cases, the questions involving binomial expansion contain very long and complex calculations due to the presence of factorial terms. You should also know that the binomial coefficient and actual coefficients might or might not be the same. For example: in the expansion of ${{\left( 1+3x \right)}^{3}}$ , the binomial coefficient of ${{x}^{3}}$ is $^{3}{{C}_{3}}=1$ and coefficient is 27.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW


