
Find the expansion of ${{\left( 2a-3b \right)}^{3}}$ :
(a) $8{{a}^{3}}-27{{b}^{3}}-36{{a}^{2}}b-54a{{b}^{2}}$
(b) $8{{a}^{3}}+27{{b}^{3}}-36{{a}^{2}}b+54a{{b}^{2}}$
(c) $8{{a}^{3}}-27{{b}^{3}}+36{{a}^{2}}b+54a{{b}^{2}}$
(d) $8{{a}^{3}}-27{{b}^{3}}-36{{a}^{2}}b+54a{{b}^{2}}$
Answer
513.9k+ views
Hint: Apply the binomial expansion of ${{\left( a-b \right)}^{3}}$ that you get by using the general expansion of ${{\left( a-b \right)}^{n}}$. Finally, replace ‘a‘ by 2a and ‘b’ by 3b to get the expansion of ${{\left( 2a-3b \right)}^{3}}$.
Complete step-by-step solution -
We know that the binomial expansion of ${{\left( a-b \right)}^{n}}$ , can be written as:
${{\left( a-b \right)}^{n}}={{\text{ }}^{n}}{{\text{C}}_{0}}{{a}^{n}}{{b}^{0}}{{-}^{n}}{{\text{C}}_{1}}{{a}^{n-1}}{{b}^{1}}{{+}^{n}}{{\text{C}}_{2}}{{a}^{n-2}}{{b}^{2}}-.........{{+}^{n}}{{\text{C}}_{n}}{{a}^{0}}{{\left( -b \right)}^{n}}$
Therefore, if we take n to be 3, the binomial expansion of ${{\left( a-b \right)}^{3}}$ is:
${{\left( a-b \right)}^{3}}={{\text{ }}^{3}}{{\text{C}}_{0}}{{a}^{3}}{{b}^{0}}{{-}^{3}}{{\text{C}}_{1}}{{a}^{2}}{{b}^{1}}{{+}^{3}}{{\text{C}}_{2}}{{a}^{1}}{{b}^{2}}{{-}^{3}}{{\text{C}}_{3}}{{a}^{0}}{{b}^{3}}$
Now, if we replace ‘a’ by 2a and ‘b’ by 3b, in the above expansion, we will end up getting the expansion of ${{\left( 2a-3b \right)}^{3}}$ .
$\therefore {{\left( 2a-3b \right)}^{3}}={{\text{ }}^{3}}{{\text{C}}_{0}}{{(2a)}^{3}}{{(3b)}^{0}}{{-}^{3}}{{\text{C}}_{1}}{{(2a)}^{2}}{{(3b)}^{1}}{{+}^{3}}{{\text{C}}_{2}}{{(2a)}^{1}}{{(3b)}^{2}}{{-}^{3}}{{\text{C}}_{3}}{{(2a)}^{0}}{{(3b)}^{3}}$
$\Rightarrow {{\left( a-b \right)}^{3}}=\text{ 8}{{\times }^{3}}{{\text{C}}_{0}}{{a}^{3}}{{b}^{0}}-12{{\times }^{3}}{{\text{C}}_{1}}{{a}^{2}}{{b}^{1}}+18{{\times }^{3}}{{\text{C}}_{2}}{{a}^{1}}{{b}^{2}}-27{{\times }^{3}}{{\text{C}}_{3}}{{a}^{0}}{{b}^{3}}$
Now we know that $^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ . Therefore, our equation becomes:
${{\left( a-b \right)}^{3}}=\text{ 8}\times \dfrac{3!}{3!0!}{{a}^{3}}{{b}^{0}}-12\times \dfrac{3!}{2!1!}{{a}^{2}}{{b}^{1}}+18\times \dfrac{3!}{2!1!}{{a}^{1}}{{b}^{2}}-27\times \dfrac{3!}{3!0!}{{a}^{0}}{{b}^{3}}$
We also know that 0! Is equal to 1.
$\therefore {{\left( a-b \right)}^{3}}=\text{ 8}{{a}^{3}}-36{{a}^{2}}{{b}^{1}}+54{{a}^{1}}{{b}^{2}}-27{{b}^{3}}$
Therefore, we can conclude that the answer to the above question is option (d).
Note: Always be careful with the signs that appear in the expansions, as the students are generally finding signs to be a concern while using the binomial expansions. Also, be careful about the calculation part, as in general cases, the questions involving binomial expansion contain very long and complex calculations due to the presence of factorial terms. You should also know that the binomial coefficient and actual coefficients might or might not be the same. For example: in the expansion of ${{\left( 1+3x \right)}^{3}}$ , the binomial coefficient of ${{x}^{3}}$ is $^{3}{{C}_{3}}=1$ and coefficient is 27.
Complete step-by-step solution -
We know that the binomial expansion of ${{\left( a-b \right)}^{n}}$ , can be written as:
${{\left( a-b \right)}^{n}}={{\text{ }}^{n}}{{\text{C}}_{0}}{{a}^{n}}{{b}^{0}}{{-}^{n}}{{\text{C}}_{1}}{{a}^{n-1}}{{b}^{1}}{{+}^{n}}{{\text{C}}_{2}}{{a}^{n-2}}{{b}^{2}}-.........{{+}^{n}}{{\text{C}}_{n}}{{a}^{0}}{{\left( -b \right)}^{n}}$
Therefore, if we take n to be 3, the binomial expansion of ${{\left( a-b \right)}^{3}}$ is:
${{\left( a-b \right)}^{3}}={{\text{ }}^{3}}{{\text{C}}_{0}}{{a}^{3}}{{b}^{0}}{{-}^{3}}{{\text{C}}_{1}}{{a}^{2}}{{b}^{1}}{{+}^{3}}{{\text{C}}_{2}}{{a}^{1}}{{b}^{2}}{{-}^{3}}{{\text{C}}_{3}}{{a}^{0}}{{b}^{3}}$
Now, if we replace ‘a’ by 2a and ‘b’ by 3b, in the above expansion, we will end up getting the expansion of ${{\left( 2a-3b \right)}^{3}}$ .
$\therefore {{\left( 2a-3b \right)}^{3}}={{\text{ }}^{3}}{{\text{C}}_{0}}{{(2a)}^{3}}{{(3b)}^{0}}{{-}^{3}}{{\text{C}}_{1}}{{(2a)}^{2}}{{(3b)}^{1}}{{+}^{3}}{{\text{C}}_{2}}{{(2a)}^{1}}{{(3b)}^{2}}{{-}^{3}}{{\text{C}}_{3}}{{(2a)}^{0}}{{(3b)}^{3}}$
$\Rightarrow {{\left( a-b \right)}^{3}}=\text{ 8}{{\times }^{3}}{{\text{C}}_{0}}{{a}^{3}}{{b}^{0}}-12{{\times }^{3}}{{\text{C}}_{1}}{{a}^{2}}{{b}^{1}}+18{{\times }^{3}}{{\text{C}}_{2}}{{a}^{1}}{{b}^{2}}-27{{\times }^{3}}{{\text{C}}_{3}}{{a}^{0}}{{b}^{3}}$
Now we know that $^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ . Therefore, our equation becomes:
${{\left( a-b \right)}^{3}}=\text{ 8}\times \dfrac{3!}{3!0!}{{a}^{3}}{{b}^{0}}-12\times \dfrac{3!}{2!1!}{{a}^{2}}{{b}^{1}}+18\times \dfrac{3!}{2!1!}{{a}^{1}}{{b}^{2}}-27\times \dfrac{3!}{3!0!}{{a}^{0}}{{b}^{3}}$
We also know that 0! Is equal to 1.
$\therefore {{\left( a-b \right)}^{3}}=\text{ 8}{{a}^{3}}-36{{a}^{2}}{{b}^{1}}+54{{a}^{1}}{{b}^{2}}-27{{b}^{3}}$
Therefore, we can conclude that the answer to the above question is option (d).
Note: Always be careful with the signs that appear in the expansions, as the students are generally finding signs to be a concern while using the binomial expansions. Also, be careful about the calculation part, as in general cases, the questions involving binomial expansion contain very long and complex calculations due to the presence of factorial terms. You should also know that the binomial coefficient and actual coefficients might or might not be the same. For example: in the expansion of ${{\left( 1+3x \right)}^{3}}$ , the binomial coefficient of ${{x}^{3}}$ is $^{3}{{C}_{3}}=1$ and coefficient is 27.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

The first successful textile mill was established in class 9 social science CBSE

Given that HCF 306 657 9 find the LCM 306 657 class 9 maths CBSE

The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE

A piece of wire 20 cm long is bent into the form of class 9 maths CBSE

Difference Between Plant Cell and Animal Cell
