
How do you find the exact value of \[\cos \left( {\dfrac{{2\pi }}{3}} \right)\]?
Answer
558k+ views
Hint: In this question we have to find the value of cos value of the angle given, this can be done by using trigonometric double angle identity i.e.,\[\cos 2A = 2{\cos ^2}A - 1\], and we should know that the value of \[\cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2}\], and substituting the values in the identities we will get the required value.
Complete step-by-step solution:
Given trigonometric expression is \[\cos \left( {\dfrac{{2\pi }}{3}} \right)\],
Now transforming the expression in form of \[\cos 2A\], we get,
\[ \Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right)\],
We know that the trigonometric identity for the double angle for cos which is given by,
\[\cos 2A = 2{\cos ^2}A - 1\],
Now comparing two expressions we get, here\[A = \dfrac{\pi }{3}\],b
By substituting the value in the trigonometric identity, \[\cos 2A = 2{\cos ^2}A - 1\], we get,
\[ \Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = 2{\cos ^2}\dfrac{\pi }{3} - 1\],
We know that\[\cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2}\], now substituting the value in the identity we get,
\[ \Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = 2{\left( {\dfrac{1}{2}} \right)^2} - 1\],
So, now simplifying we get,
\[ \Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = 2\left( {\dfrac{1}{4}} \right) - 1\],
Now removing the brackets by doing multiplication we get,
\[ \Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2} - 1\],
Now taking the L.C.M on the right hand side we get,
\[ \Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = \dfrac{{1 - 2}}{2}\],
By further simplification we get,
\[ \Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = \dfrac{{ - 1}}{2}\],
So, the exact value for the cos is \[\dfrac{{ - 1}}{2}\].
\[\therefore \]The exact value for the given cos angle i.e., \[\cos \left( {\dfrac{{2\pi }}{3}} \right)\] will be equal to \[\dfrac{{ - 1}}{2}\].
Note: This question can be solved by another method by using the identity \[\cos \left( {\pi - \theta } \right) = - \cos \theta \], so here \[\dfrac{{2\pi }}{3}\] can be written as,\[\pi - \dfrac{\pi }{3}\], i.e,
\[ \Rightarrow \dfrac{{2\pi }}{3} = \pi - \dfrac{\pi }{3}\],
Now applying cos on both sides we get,
\[ \Rightarrow \cos \dfrac{{2\pi }}{3} = \cos \left( {\pi - \dfrac{\pi }{3}} \right)\],
We know that \[\cos \left( {\pi - \theta } \right) = - \cos \theta \], now applying the identity we get,
\[ \Rightarrow \cos \dfrac{{2\pi }}{3} = - \cos \left( {\dfrac{\pi }{3}} \right)\],
And we know that \[\cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2}\], now substituting the value in the expression we get,
\[ \Rightarrow \cos \dfrac{{2\pi }}{3} = - \dfrac{1}{2}\],
So from the two methods we got the same value for \[\cos \dfrac{{2\pi }}{3}\] i.e.,\[ - \dfrac{1}{2}\].
Complete step-by-step solution:
Given trigonometric expression is \[\cos \left( {\dfrac{{2\pi }}{3}} \right)\],
Now transforming the expression in form of \[\cos 2A\], we get,
\[ \Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right)\],
We know that the trigonometric identity for the double angle for cos which is given by,
\[\cos 2A = 2{\cos ^2}A - 1\],
Now comparing two expressions we get, here\[A = \dfrac{\pi }{3}\],b
By substituting the value in the trigonometric identity, \[\cos 2A = 2{\cos ^2}A - 1\], we get,
\[ \Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = 2{\cos ^2}\dfrac{\pi }{3} - 1\],
We know that\[\cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2}\], now substituting the value in the identity we get,
\[ \Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = 2{\left( {\dfrac{1}{2}} \right)^2} - 1\],
So, now simplifying we get,
\[ \Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = 2\left( {\dfrac{1}{4}} \right) - 1\],
Now removing the brackets by doing multiplication we get,
\[ \Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2} - 1\],
Now taking the L.C.M on the right hand side we get,
\[ \Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = \dfrac{{1 - 2}}{2}\],
By further simplification we get,
\[ \Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = \dfrac{{ - 1}}{2}\],
So, the exact value for the cos is \[\dfrac{{ - 1}}{2}\].
\[\therefore \]The exact value for the given cos angle i.e., \[\cos \left( {\dfrac{{2\pi }}{3}} \right)\] will be equal to \[\dfrac{{ - 1}}{2}\].
Note: This question can be solved by another method by using the identity \[\cos \left( {\pi - \theta } \right) = - \cos \theta \], so here \[\dfrac{{2\pi }}{3}\] can be written as,\[\pi - \dfrac{\pi }{3}\], i.e,
\[ \Rightarrow \dfrac{{2\pi }}{3} = \pi - \dfrac{\pi }{3}\],
Now applying cos on both sides we get,
\[ \Rightarrow \cos \dfrac{{2\pi }}{3} = \cos \left( {\pi - \dfrac{\pi }{3}} \right)\],
We know that \[\cos \left( {\pi - \theta } \right) = - \cos \theta \], now applying the identity we get,
\[ \Rightarrow \cos \dfrac{{2\pi }}{3} = - \cos \left( {\dfrac{\pi }{3}} \right)\],
And we know that \[\cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2}\], now substituting the value in the expression we get,
\[ \Rightarrow \cos \dfrac{{2\pi }}{3} = - \dfrac{1}{2}\],
So from the two methods we got the same value for \[\cos \dfrac{{2\pi }}{3}\] i.e.,\[ - \dfrac{1}{2}\].
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

