
How do you find the exact value of \[\cos \left( {\dfrac{{2\pi }}{3}} \right)\]?
Answer
544.2k+ views
Hint: In this question we have to find the value of cos value of the angle given, this can be done by using trigonometric double angle identity i.e.,\[\cos 2A = 2{\cos ^2}A - 1\], and we should know that the value of \[\cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2}\], and substituting the values in the identities we will get the required value.
Complete step-by-step solution:
Given trigonometric expression is \[\cos \left( {\dfrac{{2\pi }}{3}} \right)\],
Now transforming the expression in form of \[\cos 2A\], we get,
\[ \Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right)\],
We know that the trigonometric identity for the double angle for cos which is given by,
\[\cos 2A = 2{\cos ^2}A - 1\],
Now comparing two expressions we get, here\[A = \dfrac{\pi }{3}\],b
By substituting the value in the trigonometric identity, \[\cos 2A = 2{\cos ^2}A - 1\], we get,
\[ \Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = 2{\cos ^2}\dfrac{\pi }{3} - 1\],
We know that\[\cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2}\], now substituting the value in the identity we get,
\[ \Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = 2{\left( {\dfrac{1}{2}} \right)^2} - 1\],
So, now simplifying we get,
\[ \Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = 2\left( {\dfrac{1}{4}} \right) - 1\],
Now removing the brackets by doing multiplication we get,
\[ \Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2} - 1\],
Now taking the L.C.M on the right hand side we get,
\[ \Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = \dfrac{{1 - 2}}{2}\],
By further simplification we get,
\[ \Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = \dfrac{{ - 1}}{2}\],
So, the exact value for the cos is \[\dfrac{{ - 1}}{2}\].
\[\therefore \]The exact value for the given cos angle i.e., \[\cos \left( {\dfrac{{2\pi }}{3}} \right)\] will be equal to \[\dfrac{{ - 1}}{2}\].
Note: This question can be solved by another method by using the identity \[\cos \left( {\pi - \theta } \right) = - \cos \theta \], so here \[\dfrac{{2\pi }}{3}\] can be written as,\[\pi - \dfrac{\pi }{3}\], i.e,
\[ \Rightarrow \dfrac{{2\pi }}{3} = \pi - \dfrac{\pi }{3}\],
Now applying cos on both sides we get,
\[ \Rightarrow \cos \dfrac{{2\pi }}{3} = \cos \left( {\pi - \dfrac{\pi }{3}} \right)\],
We know that \[\cos \left( {\pi - \theta } \right) = - \cos \theta \], now applying the identity we get,
\[ \Rightarrow \cos \dfrac{{2\pi }}{3} = - \cos \left( {\dfrac{\pi }{3}} \right)\],
And we know that \[\cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2}\], now substituting the value in the expression we get,
\[ \Rightarrow \cos \dfrac{{2\pi }}{3} = - \dfrac{1}{2}\],
So from the two methods we got the same value for \[\cos \dfrac{{2\pi }}{3}\] i.e.,\[ - \dfrac{1}{2}\].
Complete step-by-step solution:
Given trigonometric expression is \[\cos \left( {\dfrac{{2\pi }}{3}} \right)\],
Now transforming the expression in form of \[\cos 2A\], we get,
\[ \Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right)\],
We know that the trigonometric identity for the double angle for cos which is given by,
\[\cos 2A = 2{\cos ^2}A - 1\],
Now comparing two expressions we get, here\[A = \dfrac{\pi }{3}\],b
By substituting the value in the trigonometric identity, \[\cos 2A = 2{\cos ^2}A - 1\], we get,
\[ \Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = 2{\cos ^2}\dfrac{\pi }{3} - 1\],
We know that\[\cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2}\], now substituting the value in the identity we get,
\[ \Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = 2{\left( {\dfrac{1}{2}} \right)^2} - 1\],
So, now simplifying we get,
\[ \Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = 2\left( {\dfrac{1}{4}} \right) - 1\],
Now removing the brackets by doing multiplication we get,
\[ \Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2} - 1\],
Now taking the L.C.M on the right hand side we get,
\[ \Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = \dfrac{{1 - 2}}{2}\],
By further simplification we get,
\[ \Rightarrow \cos 2\left( {\dfrac{\pi }{3}} \right) = \dfrac{{ - 1}}{2}\],
So, the exact value for the cos is \[\dfrac{{ - 1}}{2}\].
\[\therefore \]The exact value for the given cos angle i.e., \[\cos \left( {\dfrac{{2\pi }}{3}} \right)\] will be equal to \[\dfrac{{ - 1}}{2}\].
Note: This question can be solved by another method by using the identity \[\cos \left( {\pi - \theta } \right) = - \cos \theta \], so here \[\dfrac{{2\pi }}{3}\] can be written as,\[\pi - \dfrac{\pi }{3}\], i.e,
\[ \Rightarrow \dfrac{{2\pi }}{3} = \pi - \dfrac{\pi }{3}\],
Now applying cos on both sides we get,
\[ \Rightarrow \cos \dfrac{{2\pi }}{3} = \cos \left( {\pi - \dfrac{\pi }{3}} \right)\],
We know that \[\cos \left( {\pi - \theta } \right) = - \cos \theta \], now applying the identity we get,
\[ \Rightarrow \cos \dfrac{{2\pi }}{3} = - \cos \left( {\dfrac{\pi }{3}} \right)\],
And we know that \[\cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2}\], now substituting the value in the expression we get,
\[ \Rightarrow \cos \dfrac{{2\pi }}{3} = - \dfrac{1}{2}\],
So from the two methods we got the same value for \[\cos \dfrac{{2\pi }}{3}\] i.e.,\[ - \dfrac{1}{2}\].
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

