
Find the equation to the tangent to the circle ${{\text{x}}^2} + {{\text{y}}^2} = {{\text{a}}^2}$ which
Is parallel to the straight line y = mx + c
Is perpendicular to the straight line y = mx + c
Passes through the point (b, 0)
Make with the axes a triangle whose area is ${{\text{a}}^2}$.
Answer
613.5k+ views
Hint: In order to deduct the tangent equations for these specific cases, we refer to the formulae of tangent equation to a circle equation and pick the appropriate one.
Complete step-by-step answer:
Parallel to the line y = mx + c
We know parallel lines have the same slopes, hence the slope of the equation of the tangent to be found is also m.
We know the tangent to a circle equation ${{\text{x}}^2} + {{\text{y}}^2} = {{\text{a}}^2}$for the line of the form y = mx + c is ${\text{y = mx }} \pm {\text{ a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} $, where m is the slope of the line and a is the radius of the circle.
Hence, the tangent equation to the circle parallel to the given line is ${\text{y = mx }} \pm {\text{ a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} $.
$ \Rightarrow {\text{mx - y}} \pm {\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} = 0$
Perpendicular to the line y = mx + c
We know, perpendicular lines have slopes such that their product is -1, i.e. ${{\text{m}}_1} \times {{\text{m}}_2} = - 1$, where ${{\text{m}}_1}$ and ${{\text{m}}_2}$are the slopes of each line respectively.
The slope of the given line is m, hence the slope of the equation of the tangent to be found is $ - \dfrac{1}{{\text{m}}}$.
We know the tangent to a circle equation ${{\text{x}}^2} + {{\text{y}}^2} = {{\text{a}}^2}$for the line of the form y = mx + c is ${\text{y = mx }} \pm {\text{ a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} $, where m is the slope of the line and a is the radius of the circle.
Hence, the tangent equation to the circle parallel to the given line is ${\text{y = - }}\dfrac{1}{{\text{m}}}{\text{x }} \pm {\text{ a}}\sqrt {\left[ {1 + {{\left( { - \dfrac{1}{{\text{m}}}} \right)}^2}} \right]} $
$ \Rightarrow {\text{y = - }}\dfrac{{\text{x}}}{{\text{m}}} \pm {\text{ a}}\sqrt {\left[ {1 + \dfrac{1}{{{{\text{m}}^2}}}} \right]} $
$
\Rightarrow {\text{my = - x}} \pm {\text{a}}\sqrt {\left[ {{{\text{m}}^2} + 1} \right]} \\
\Rightarrow {\text{x + my }} \mp {\text{a}}\sqrt {\left[ {{{\text{m}}^2} + 1} \right]} = 0 \\
$
Passes through the point (b, 0)
We know the tangent to a circle equation ${{\text{x}}^2} + {{\text{y}}^2} = {{\text{a}}^2}$at a point $\left( {{{\text{x}}_1}{\text{,}}{{\text{y}}_1}} \right)$is given by ${\text{x}}{{\text{x}}_1} + {\text{y}}{{\text{y}}_1} = {{\text{a}}^2}$where a is the radius of the circle.
Hence, the tangent equation to the circle through (b, 0) is ${\text{x}}\left( {\text{b}} \right) + {\text{y}}\left( 0 \right) = {{\text{a}}^2}$
$ \Rightarrow {\text{xb = }}{{\text{a}}^2}$.
Makes with the axes a triangle whose area is ${{\text{a}}^2}$
We know the tangent to a circle equation ${{\text{x}}^2} + {{\text{y}}^2} = {{\text{a}}^2}$ for the line of the form y = mx + c is ${\text{y = mx }} \pm {\text{ a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} $, where m is the slope of the line and a is the radius of the circle.
${\text{y = mx + a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} $
(We consider only the positive sign and divide the entire equation with \[{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} \])
\[
\Rightarrow \dfrac{{\text{y}}}{{{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} }}{\text{ = }}\dfrac{{{\text{mx}}}}{{{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} }}{\text{ + }}\dfrac{{{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} }}{{{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} }} \\
\Rightarrow \dfrac{{\text{x}}}{{\dfrac{{{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} }}{{ - {\text{m}}}}}} + \dfrac{{\text{y}}}{{{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} }} = 1{\text{ - - - - }}\left( 1 \right) \\
\]
We know the area formed by the line of the form $\dfrac{{\text{x}}}{{\text{a}}} + \dfrac{{\text{y}}}{{\text{b}}} = 1$ with the axes is $\dfrac{1}{2}|{\text{ab|}}$, where a and b are x and y intercepts respectively.
Comparing this with equation (1) we get a = \[\dfrac{{{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} }}{{ - {\text{m}}}}\]and b = \[{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} \]
Hence area of triangle formed = $\dfrac{1}{2} \times \dfrac{{{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} }}{{| - {\text{m|}}}} \times {\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} $
= $\dfrac{1}{2} \times \dfrac{{{{\left( {{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} } \right)}^2}}}{{| - {\text{m|}}}}$
= $\dfrac{1}{2} \times \dfrac{{{{\text{a}}^2}\left( {1 + {{\text{m}}^2}} \right)}}{{| - {\text{m|}}}}$
Given area of triangles formed = ${{\text{a}}^2}$
Therefore, ${{\text{a}}^2}$= $\dfrac{1}{2} \times \dfrac{{{{\text{a}}^2}\left( {1 + {{\text{m}}^2}} \right)}}{{| - {\text{m|}}}}$
$
\Rightarrow \dfrac{{{\text{a}}\sqrt {1 + {{\text{m}}^2}} }}{{\text{m}}} = \pm {\text{2}}{{\text{a}}^2} \\
\Rightarrow {{\text{m}}^2} + 1 \pm {\text{2m = 0}} \\
\Rightarrow {\text{m = - 1 or 1}} \\
$
Hence the equation of the tangent forming an area ${{\text{a}}^2}$with the axes is
$
{\text{y = }} \pm {\text{x}} \pm {\text{a}}\sqrt {1 + 1} \\
\Rightarrow {\text{x}} \pm {\text{y = }} \pm {\text{a}}\sqrt 2 \\
$
Note – In order to solve this type of problems the key is to have good knowledge in the concepts of parallel and perpendicular lines. Also the tangent equation to a circle formula with respect to the specific conditions.
Some additional formulae:
The tangent to a circle equation of the form ${{\text{x}}^2} + {{\text{y}}^2} + 2{\text{gx + 2fy + c = 0}}$at point $\left( {{{\text{x}}_1},{{\text{y}}_1}} \right)$is${\text{x}}{{\text{x}}_1}{\text{ + y}}{{\text{y}}_1}{\text{ + g}}\left( {{\text{x + }}{{\text{x}}_1}} \right) + {\text{f}}\left( {{\text{y + }}{{\text{y}}_1}} \right) + {\text{c = 0}}$.
The tangent to a circle equation of the form ${{\text{x}}^2} + {{\text{y}}^2}{\text{ = }}{{\text{a}}^2}$at point $\left( {{\text{acos}}\theta ,{\text{asin}}\theta } \right)$ is \[{\text{xcos}}\theta {\text{ + ysin}}\theta {\text{ = a}}\].
Complete step-by-step answer:
Parallel to the line y = mx + c
We know parallel lines have the same slopes, hence the slope of the equation of the tangent to be found is also m.
We know the tangent to a circle equation ${{\text{x}}^2} + {{\text{y}}^2} = {{\text{a}}^2}$for the line of the form y = mx + c is ${\text{y = mx }} \pm {\text{ a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} $, where m is the slope of the line and a is the radius of the circle.
Hence, the tangent equation to the circle parallel to the given line is ${\text{y = mx }} \pm {\text{ a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} $.
$ \Rightarrow {\text{mx - y}} \pm {\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} = 0$
Perpendicular to the line y = mx + c
We know, perpendicular lines have slopes such that their product is -1, i.e. ${{\text{m}}_1} \times {{\text{m}}_2} = - 1$, where ${{\text{m}}_1}$ and ${{\text{m}}_2}$are the slopes of each line respectively.
The slope of the given line is m, hence the slope of the equation of the tangent to be found is $ - \dfrac{1}{{\text{m}}}$.
We know the tangent to a circle equation ${{\text{x}}^2} + {{\text{y}}^2} = {{\text{a}}^2}$for the line of the form y = mx + c is ${\text{y = mx }} \pm {\text{ a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} $, where m is the slope of the line and a is the radius of the circle.
Hence, the tangent equation to the circle parallel to the given line is ${\text{y = - }}\dfrac{1}{{\text{m}}}{\text{x }} \pm {\text{ a}}\sqrt {\left[ {1 + {{\left( { - \dfrac{1}{{\text{m}}}} \right)}^2}} \right]} $
$ \Rightarrow {\text{y = - }}\dfrac{{\text{x}}}{{\text{m}}} \pm {\text{ a}}\sqrt {\left[ {1 + \dfrac{1}{{{{\text{m}}^2}}}} \right]} $
$
\Rightarrow {\text{my = - x}} \pm {\text{a}}\sqrt {\left[ {{{\text{m}}^2} + 1} \right]} \\
\Rightarrow {\text{x + my }} \mp {\text{a}}\sqrt {\left[ {{{\text{m}}^2} + 1} \right]} = 0 \\
$
Passes through the point (b, 0)
We know the tangent to a circle equation ${{\text{x}}^2} + {{\text{y}}^2} = {{\text{a}}^2}$at a point $\left( {{{\text{x}}_1}{\text{,}}{{\text{y}}_1}} \right)$is given by ${\text{x}}{{\text{x}}_1} + {\text{y}}{{\text{y}}_1} = {{\text{a}}^2}$where a is the radius of the circle.
Hence, the tangent equation to the circle through (b, 0) is ${\text{x}}\left( {\text{b}} \right) + {\text{y}}\left( 0 \right) = {{\text{a}}^2}$
$ \Rightarrow {\text{xb = }}{{\text{a}}^2}$.
Makes with the axes a triangle whose area is ${{\text{a}}^2}$
We know the tangent to a circle equation ${{\text{x}}^2} + {{\text{y}}^2} = {{\text{a}}^2}$ for the line of the form y = mx + c is ${\text{y = mx }} \pm {\text{ a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} $, where m is the slope of the line and a is the radius of the circle.
${\text{y = mx + a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} $
(We consider only the positive sign and divide the entire equation with \[{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} \])
\[
\Rightarrow \dfrac{{\text{y}}}{{{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} }}{\text{ = }}\dfrac{{{\text{mx}}}}{{{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} }}{\text{ + }}\dfrac{{{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} }}{{{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} }} \\
\Rightarrow \dfrac{{\text{x}}}{{\dfrac{{{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} }}{{ - {\text{m}}}}}} + \dfrac{{\text{y}}}{{{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} }} = 1{\text{ - - - - }}\left( 1 \right) \\
\]
We know the area formed by the line of the form $\dfrac{{\text{x}}}{{\text{a}}} + \dfrac{{\text{y}}}{{\text{b}}} = 1$ with the axes is $\dfrac{1}{2}|{\text{ab|}}$, where a and b are x and y intercepts respectively.
Comparing this with equation (1) we get a = \[\dfrac{{{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} }}{{ - {\text{m}}}}\]and b = \[{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} \]
Hence area of triangle formed = $\dfrac{1}{2} \times \dfrac{{{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} }}{{| - {\text{m|}}}} \times {\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} $
= $\dfrac{1}{2} \times \dfrac{{{{\left( {{\text{a}}\sqrt {\left[ {1 + {{\text{m}}^2}} \right]} } \right)}^2}}}{{| - {\text{m|}}}}$
= $\dfrac{1}{2} \times \dfrac{{{{\text{a}}^2}\left( {1 + {{\text{m}}^2}} \right)}}{{| - {\text{m|}}}}$
Given area of triangles formed = ${{\text{a}}^2}$
Therefore, ${{\text{a}}^2}$= $\dfrac{1}{2} \times \dfrac{{{{\text{a}}^2}\left( {1 + {{\text{m}}^2}} \right)}}{{| - {\text{m|}}}}$
$
\Rightarrow \dfrac{{{\text{a}}\sqrt {1 + {{\text{m}}^2}} }}{{\text{m}}} = \pm {\text{2}}{{\text{a}}^2} \\
\Rightarrow {{\text{m}}^2} + 1 \pm {\text{2m = 0}} \\
\Rightarrow {\text{m = - 1 or 1}} \\
$
Hence the equation of the tangent forming an area ${{\text{a}}^2}$with the axes is
$
{\text{y = }} \pm {\text{x}} \pm {\text{a}}\sqrt {1 + 1} \\
\Rightarrow {\text{x}} \pm {\text{y = }} \pm {\text{a}}\sqrt 2 \\
$
Note – In order to solve this type of problems the key is to have good knowledge in the concepts of parallel and perpendicular lines. Also the tangent equation to a circle formula with respect to the specific conditions.
Some additional formulae:
The tangent to a circle equation of the form ${{\text{x}}^2} + {{\text{y}}^2} + 2{\text{gx + 2fy + c = 0}}$at point $\left( {{{\text{x}}_1},{{\text{y}}_1}} \right)$is${\text{x}}{{\text{x}}_1}{\text{ + y}}{{\text{y}}_1}{\text{ + g}}\left( {{\text{x + }}{{\text{x}}_1}} \right) + {\text{f}}\left( {{\text{y + }}{{\text{y}}_1}} \right) + {\text{c = 0}}$.
The tangent to a circle equation of the form ${{\text{x}}^2} + {{\text{y}}^2}{\text{ = }}{{\text{a}}^2}$at point $\left( {{\text{acos}}\theta ,{\text{asin}}\theta } \right)$ is \[{\text{xcos}}\theta {\text{ + ysin}}\theta {\text{ = a}}\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

