
Find the electric flux through the disc.
Answer
467.1k+ views
Hint: This question can be solved by concepts of Gauss Law. Connect all the points on the periphery of the disc to the point charge to generate a cone before proceeding to solve the problem.
Formula Used: The formulae used in the solution are given here. where is the charge, is the electric field and represents the surface area.
Complete Step by Step Solution: . . Substituting the value of in the equation for electric flux, .
Note: The solid angle at the vertex of a cone can be derived by considering the spherical segment of the sphere centered at the vertex and passing through the periphery of the base and contained by the cone’s base, and integrating the small elemental solid angles. Gauss’s Law can be used to solve complex electrostatic problems involving unique symmetries like cylindrical, spherical or planar symmetry. Also, there are some cases in which calculation of electric fields is quite complex and involves tough integration. Gauss’s Law can be used to simplify the evaluation of electric fields in a simple way.
Formula Used: The formulae used in the solution are given here.
Gauss Law states that the total electric flux out of a closed surface is equal to the charge enclosed divided by the permittivity. The electric flux in an area is defined as the electric field multiplied by the area of the surface projected in a plane and perpendicular to the field.
Thus, the total flux linked with a closed surface is times the charge enclosed by the closed surface. where is the charge, is the electric field and represents the surface area. It has been given that a point charge is placed at a distance from the center of a circular disc of radius .
If we connect the charge to all the points on the periphery of the disc, we get a cone.
This flux originates in a solid angle . In the given case the solid angle subtended by the cone subtended by the disc at the point charge is .So the flux of which is passing through the surface of the disc is,
We get the value of , from the figure.
We get the electric flux as .
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
