
How do you find the Eigenvalue and Eigenvectors of a matrix?
The matrix is \[\left( {\begin{array}{*{20}{c}}
0&4&0 \\
{ - 1}&{ - 4}&0 \\
0&0&{ - 2}
\end{array}} \right)\]
Answer
539.7k+ views
Hint: Set up the characteristic equation, using $|A - \lambda I| = 0$
Solve the characteristic equation, giving us the eigenvalue
Substitute the eigenvalue into the two equations given by $|A - \lambda I|$
Choose a convenient value for ${x_1}$, then find ${x_2}$
The resulting values form the corresponding eigenvectors of a given matrix.
Complete step-by-step solution:
Let us consider the given matrix \[\left( {\begin{array}{*{20}{c}}
0&4&0 \\
{ - 1}&{ - 4}&0 \\
0&0&{ - 2}
\end{array}} \right) = A\]
If non-zero $e$ is an eigenvector of the $3$ by $3$ matrix $A$ , then $Ae = \lambda e$ For some scalar $\lambda $.
This scalar is called an eigenvalue of $A$
This may be rewritten as
$ \Rightarrow Ae = \lambda Ie$
And inturn we write this as
$ \Rightarrow \left( {A - \lambda I} \right)e = 0$
Therefore the characteristic equation is
$ \Rightarrow A - \lambda I = 0$
Now substitute the matrix value, we get
\[ \Rightarrow \left( {\begin{array}{*{20}{c}}
{0 - \lambda }&4&0 \\
{ - 1}&{ - 4 - \lambda }&0 \\
0&0&{ - 2 - \lambda }
\end{array}} \right) = 0\]
Now we can expand the determinant
$ \Rightarrow \left( {0 - \lambda } \right)\left( {\left( { - 4 - \lambda } \right)\left( { - 2 - \lambda } \right) - 0} \right) - 4\left( {\left( { - 1} \right)\left( { - 2 - \lambda } \right) - 0} \right) + 0\left( {0 - 0} \right) = 0$
Reduce the equation by multiplying inside brackets, we get
$ \Rightarrow - \lambda \left( {\left( { - 4 - \lambda } \right)\left( { - 2 - \lambda } \right)} \right) - 4\left( {2 + \lambda } \right) = 0$
On simplify the term and we get
$ \Rightarrow - \lambda \left( {8 + 4\lambda + 2\lambda + {\lambda ^2}} \right) - 8 - 4\lambda = 0$
Let us multiply we get,
$ \Rightarrow - 8\lambda - 4{\lambda ^2} - 2{\lambda ^2} - {\lambda ^3} - 8 - 4\lambda = 0$
On cancel the term and we get
$ \Rightarrow - {\lambda ^3} - 6{\lambda ^2} - 12\lambda - 8 = 0$
Taking minus common, we get
$ \Rightarrow {\lambda ^3} + 6{\lambda ^2} + 12\lambda + 8 = 0$
Now by factorizing the above equation
$ \Rightarrow {\left( {\lambda + 2} \right)^3} = 0$
Therefore we get
$ \Rightarrow \lambda = - 2$
The eigenvalue is $ - 2$
Now substitute these Eigen value in the characteristic equation, we get
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
{0 - \lambda }&4&0 \\
{ - 1}&{ - 4 - \lambda }&0 \\
0&0&{ - \lambda - 2}
\end{array}} \right)$
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
{ - \left( { - 2} \right)}&4&0 \\
{ - 1}&{ - \left( { - 2 - 4} \right)}&0 \\
0&0&{ - \left( { - 2 - 2} \right)}
\end{array}} \right)$
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
2&4&0 \\
{ - 1}&{ - 2}&0 \\
0&0&0
\end{array}} \right)$
Perform row operations, we get
Multiply second row with $2$
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
2&4&0 \\
{ - 2}&{ - 4}&0 \\
0&0&0
\end{array}} \right)$
Now subtract second row from first row, we get
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
2&4&0 \\
0&0&0 \\
0&0&0
\end{array}} \right)$
Now divide first row by $2$ we get
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
1&2&0 \\
0&0&0 \\
0&0&0
\end{array}} \right)$
Now solve the matrix equation by
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
1&2&0 \\
0&0&0 \\
0&0&0
\end{array}} \right)\,\left( {\begin{array}{*{20}{c}}
{{x_1}} \\
{{x_2}} \\
{{x_3}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
0 \\
0 \\
0
\end{array}} \right)$
From the above matrix equation we can find
$ \Rightarrow {x_1} + 2{x_2} = 0$
By considering ${x_2} = {x_2}$ and ${x_3} = {x_3}$
We can now find the value of ${x_1}$ we get
$ \Rightarrow {x_1} = - 2{x_2}$
$ \Rightarrow x = \left( {\begin{array}{*{20}{c}}
{ - 2{x_1}} \\
{{x_2}} \\
{{x_3}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 2} \\
1 \\
0
\end{array}} \right){x_2} + \left( {\begin{array}{*{20}{c}}
0 \\
0 \\
1
\end{array}} \right){x_3}$
$ \Rightarrow x = \left( {\begin{array}{*{20}{c}}
{ - 2} \\
1 \\
0
\end{array}} \right)$
Note: Here, we were dealing with a $3 \times 3$ system, and we found $3$ eigenvalue and $3$ corresponding eigenvectors.
If we had a $2 \times 2$ system, we would have found $2$ eigenvalue and $2$ corresponding eigenvectors.
In general, $n \times n$ system will produce $n$ eigenvalue and $n$ corresponding eigenvectors.
We could have easily chosen same value for ${x_{1\,}}$ and ${x_2}$, however it's usually more meaningful to choose a convenient starting value(usually for ${x_1}$ ) and then derive the resulting remaining values.
Solve the characteristic equation, giving us the eigenvalue
Substitute the eigenvalue into the two equations given by $|A - \lambda I|$
Choose a convenient value for ${x_1}$, then find ${x_2}$
The resulting values form the corresponding eigenvectors of a given matrix.
Complete step-by-step solution:
Let us consider the given matrix \[\left( {\begin{array}{*{20}{c}}
0&4&0 \\
{ - 1}&{ - 4}&0 \\
0&0&{ - 2}
\end{array}} \right) = A\]
If non-zero $e$ is an eigenvector of the $3$ by $3$ matrix $A$ , then $Ae = \lambda e$ For some scalar $\lambda $.
This scalar is called an eigenvalue of $A$
This may be rewritten as
$ \Rightarrow Ae = \lambda Ie$
And inturn we write this as
$ \Rightarrow \left( {A - \lambda I} \right)e = 0$
Therefore the characteristic equation is
$ \Rightarrow A - \lambda I = 0$
Now substitute the matrix value, we get
\[ \Rightarrow \left( {\begin{array}{*{20}{c}}
{0 - \lambda }&4&0 \\
{ - 1}&{ - 4 - \lambda }&0 \\
0&0&{ - 2 - \lambda }
\end{array}} \right) = 0\]
Now we can expand the determinant
$ \Rightarrow \left( {0 - \lambda } \right)\left( {\left( { - 4 - \lambda } \right)\left( { - 2 - \lambda } \right) - 0} \right) - 4\left( {\left( { - 1} \right)\left( { - 2 - \lambda } \right) - 0} \right) + 0\left( {0 - 0} \right) = 0$
Reduce the equation by multiplying inside brackets, we get
$ \Rightarrow - \lambda \left( {\left( { - 4 - \lambda } \right)\left( { - 2 - \lambda } \right)} \right) - 4\left( {2 + \lambda } \right) = 0$
On simplify the term and we get
$ \Rightarrow - \lambda \left( {8 + 4\lambda + 2\lambda + {\lambda ^2}} \right) - 8 - 4\lambda = 0$
Let us multiply we get,
$ \Rightarrow - 8\lambda - 4{\lambda ^2} - 2{\lambda ^2} - {\lambda ^3} - 8 - 4\lambda = 0$
On cancel the term and we get
$ \Rightarrow - {\lambda ^3} - 6{\lambda ^2} - 12\lambda - 8 = 0$
Taking minus common, we get
$ \Rightarrow {\lambda ^3} + 6{\lambda ^2} + 12\lambda + 8 = 0$
Now by factorizing the above equation
$ \Rightarrow {\left( {\lambda + 2} \right)^3} = 0$
Therefore we get
$ \Rightarrow \lambda = - 2$
The eigenvalue is $ - 2$
Now substitute these Eigen value in the characteristic equation, we get
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
{0 - \lambda }&4&0 \\
{ - 1}&{ - 4 - \lambda }&0 \\
0&0&{ - \lambda - 2}
\end{array}} \right)$
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
{ - \left( { - 2} \right)}&4&0 \\
{ - 1}&{ - \left( { - 2 - 4} \right)}&0 \\
0&0&{ - \left( { - 2 - 2} \right)}
\end{array}} \right)$
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
2&4&0 \\
{ - 1}&{ - 2}&0 \\
0&0&0
\end{array}} \right)$
Perform row operations, we get
Multiply second row with $2$
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
2&4&0 \\
{ - 2}&{ - 4}&0 \\
0&0&0
\end{array}} \right)$
Now subtract second row from first row, we get
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
2&4&0 \\
0&0&0 \\
0&0&0
\end{array}} \right)$
Now divide first row by $2$ we get
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
1&2&0 \\
0&0&0 \\
0&0&0
\end{array}} \right)$
Now solve the matrix equation by
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
1&2&0 \\
0&0&0 \\
0&0&0
\end{array}} \right)\,\left( {\begin{array}{*{20}{c}}
{{x_1}} \\
{{x_2}} \\
{{x_3}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
0 \\
0 \\
0
\end{array}} \right)$
From the above matrix equation we can find
$ \Rightarrow {x_1} + 2{x_2} = 0$
By considering ${x_2} = {x_2}$ and ${x_3} = {x_3}$
We can now find the value of ${x_1}$ we get
$ \Rightarrow {x_1} = - 2{x_2}$
$ \Rightarrow x = \left( {\begin{array}{*{20}{c}}
{ - 2{x_1}} \\
{{x_2}} \\
{{x_3}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 2} \\
1 \\
0
\end{array}} \right){x_2} + \left( {\begin{array}{*{20}{c}}
0 \\
0 \\
1
\end{array}} \right){x_3}$
$ \Rightarrow x = \left( {\begin{array}{*{20}{c}}
{ - 2} \\
1 \\
0
\end{array}} \right)$
Note: Here, we were dealing with a $3 \times 3$ system, and we found $3$ eigenvalue and $3$ corresponding eigenvectors.
If we had a $2 \times 2$ system, we would have found $2$ eigenvalue and $2$ corresponding eigenvectors.
In general, $n \times n$ system will produce $n$ eigenvalue and $n$ corresponding eigenvectors.
We could have easily chosen same value for ${x_{1\,}}$ and ${x_2}$, however it's usually more meaningful to choose a convenient starting value(usually for ${x_1}$ ) and then derive the resulting remaining values.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

