
How do you find the Eigenvalue and Eigenvectors of a matrix?
The matrix is \[\left( {\begin{array}{*{20}{c}}
0&4&0 \\
{ - 1}&{ - 4}&0 \\
0&0&{ - 2}
\end{array}} \right)\]
Answer
554.1k+ views
Hint: Set up the characteristic equation, using $|A - \lambda I| = 0$
Solve the characteristic equation, giving us the eigenvalue
Substitute the eigenvalue into the two equations given by $|A - \lambda I|$
Choose a convenient value for ${x_1}$, then find ${x_2}$
The resulting values form the corresponding eigenvectors of a given matrix.
Complete step-by-step solution:
Let us consider the given matrix \[\left( {\begin{array}{*{20}{c}}
0&4&0 \\
{ - 1}&{ - 4}&0 \\
0&0&{ - 2}
\end{array}} \right) = A\]
If non-zero $e$ is an eigenvector of the $3$ by $3$ matrix $A$ , then $Ae = \lambda e$ For some scalar $\lambda $.
This scalar is called an eigenvalue of $A$
This may be rewritten as
$ \Rightarrow Ae = \lambda Ie$
And inturn we write this as
$ \Rightarrow \left( {A - \lambda I} \right)e = 0$
Therefore the characteristic equation is
$ \Rightarrow A - \lambda I = 0$
Now substitute the matrix value, we get
\[ \Rightarrow \left( {\begin{array}{*{20}{c}}
{0 - \lambda }&4&0 \\
{ - 1}&{ - 4 - \lambda }&0 \\
0&0&{ - 2 - \lambda }
\end{array}} \right) = 0\]
Now we can expand the determinant
$ \Rightarrow \left( {0 - \lambda } \right)\left( {\left( { - 4 - \lambda } \right)\left( { - 2 - \lambda } \right) - 0} \right) - 4\left( {\left( { - 1} \right)\left( { - 2 - \lambda } \right) - 0} \right) + 0\left( {0 - 0} \right) = 0$
Reduce the equation by multiplying inside brackets, we get
$ \Rightarrow - \lambda \left( {\left( { - 4 - \lambda } \right)\left( { - 2 - \lambda } \right)} \right) - 4\left( {2 + \lambda } \right) = 0$
On simplify the term and we get
$ \Rightarrow - \lambda \left( {8 + 4\lambda + 2\lambda + {\lambda ^2}} \right) - 8 - 4\lambda = 0$
Let us multiply we get,
$ \Rightarrow - 8\lambda - 4{\lambda ^2} - 2{\lambda ^2} - {\lambda ^3} - 8 - 4\lambda = 0$
On cancel the term and we get
$ \Rightarrow - {\lambda ^3} - 6{\lambda ^2} - 12\lambda - 8 = 0$
Taking minus common, we get
$ \Rightarrow {\lambda ^3} + 6{\lambda ^2} + 12\lambda + 8 = 0$
Now by factorizing the above equation
$ \Rightarrow {\left( {\lambda + 2} \right)^3} = 0$
Therefore we get
$ \Rightarrow \lambda = - 2$
The eigenvalue is $ - 2$
Now substitute these Eigen value in the characteristic equation, we get
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
{0 - \lambda }&4&0 \\
{ - 1}&{ - 4 - \lambda }&0 \\
0&0&{ - \lambda - 2}
\end{array}} \right)$
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
{ - \left( { - 2} \right)}&4&0 \\
{ - 1}&{ - \left( { - 2 - 4} \right)}&0 \\
0&0&{ - \left( { - 2 - 2} \right)}
\end{array}} \right)$
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
2&4&0 \\
{ - 1}&{ - 2}&0 \\
0&0&0
\end{array}} \right)$
Perform row operations, we get
Multiply second row with $2$
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
2&4&0 \\
{ - 2}&{ - 4}&0 \\
0&0&0
\end{array}} \right)$
Now subtract second row from first row, we get
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
2&4&0 \\
0&0&0 \\
0&0&0
\end{array}} \right)$
Now divide first row by $2$ we get
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
1&2&0 \\
0&0&0 \\
0&0&0
\end{array}} \right)$
Now solve the matrix equation by
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
1&2&0 \\
0&0&0 \\
0&0&0
\end{array}} \right)\,\left( {\begin{array}{*{20}{c}}
{{x_1}} \\
{{x_2}} \\
{{x_3}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
0 \\
0 \\
0
\end{array}} \right)$
From the above matrix equation we can find
$ \Rightarrow {x_1} + 2{x_2} = 0$
By considering ${x_2} = {x_2}$ and ${x_3} = {x_3}$
We can now find the value of ${x_1}$ we get
$ \Rightarrow {x_1} = - 2{x_2}$
$ \Rightarrow x = \left( {\begin{array}{*{20}{c}}
{ - 2{x_1}} \\
{{x_2}} \\
{{x_3}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 2} \\
1 \\
0
\end{array}} \right){x_2} + \left( {\begin{array}{*{20}{c}}
0 \\
0 \\
1
\end{array}} \right){x_3}$
$ \Rightarrow x = \left( {\begin{array}{*{20}{c}}
{ - 2} \\
1 \\
0
\end{array}} \right)$
Note: Here, we were dealing with a $3 \times 3$ system, and we found $3$ eigenvalue and $3$ corresponding eigenvectors.
If we had a $2 \times 2$ system, we would have found $2$ eigenvalue and $2$ corresponding eigenvectors.
In general, $n \times n$ system will produce $n$ eigenvalue and $n$ corresponding eigenvectors.
We could have easily chosen same value for ${x_{1\,}}$ and ${x_2}$, however it's usually more meaningful to choose a convenient starting value(usually for ${x_1}$ ) and then derive the resulting remaining values.
Solve the characteristic equation, giving us the eigenvalue
Substitute the eigenvalue into the two equations given by $|A - \lambda I|$
Choose a convenient value for ${x_1}$, then find ${x_2}$
The resulting values form the corresponding eigenvectors of a given matrix.
Complete step-by-step solution:
Let us consider the given matrix \[\left( {\begin{array}{*{20}{c}}
0&4&0 \\
{ - 1}&{ - 4}&0 \\
0&0&{ - 2}
\end{array}} \right) = A\]
If non-zero $e$ is an eigenvector of the $3$ by $3$ matrix $A$ , then $Ae = \lambda e$ For some scalar $\lambda $.
This scalar is called an eigenvalue of $A$
This may be rewritten as
$ \Rightarrow Ae = \lambda Ie$
And inturn we write this as
$ \Rightarrow \left( {A - \lambda I} \right)e = 0$
Therefore the characteristic equation is
$ \Rightarrow A - \lambda I = 0$
Now substitute the matrix value, we get
\[ \Rightarrow \left( {\begin{array}{*{20}{c}}
{0 - \lambda }&4&0 \\
{ - 1}&{ - 4 - \lambda }&0 \\
0&0&{ - 2 - \lambda }
\end{array}} \right) = 0\]
Now we can expand the determinant
$ \Rightarrow \left( {0 - \lambda } \right)\left( {\left( { - 4 - \lambda } \right)\left( { - 2 - \lambda } \right) - 0} \right) - 4\left( {\left( { - 1} \right)\left( { - 2 - \lambda } \right) - 0} \right) + 0\left( {0 - 0} \right) = 0$
Reduce the equation by multiplying inside brackets, we get
$ \Rightarrow - \lambda \left( {\left( { - 4 - \lambda } \right)\left( { - 2 - \lambda } \right)} \right) - 4\left( {2 + \lambda } \right) = 0$
On simplify the term and we get
$ \Rightarrow - \lambda \left( {8 + 4\lambda + 2\lambda + {\lambda ^2}} \right) - 8 - 4\lambda = 0$
Let us multiply we get,
$ \Rightarrow - 8\lambda - 4{\lambda ^2} - 2{\lambda ^2} - {\lambda ^3} - 8 - 4\lambda = 0$
On cancel the term and we get
$ \Rightarrow - {\lambda ^3} - 6{\lambda ^2} - 12\lambda - 8 = 0$
Taking minus common, we get
$ \Rightarrow {\lambda ^3} + 6{\lambda ^2} + 12\lambda + 8 = 0$
Now by factorizing the above equation
$ \Rightarrow {\left( {\lambda + 2} \right)^3} = 0$
Therefore we get
$ \Rightarrow \lambda = - 2$
The eigenvalue is $ - 2$
Now substitute these Eigen value in the characteristic equation, we get
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
{0 - \lambda }&4&0 \\
{ - 1}&{ - 4 - \lambda }&0 \\
0&0&{ - \lambda - 2}
\end{array}} \right)$
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
{ - \left( { - 2} \right)}&4&0 \\
{ - 1}&{ - \left( { - 2 - 4} \right)}&0 \\
0&0&{ - \left( { - 2 - 2} \right)}
\end{array}} \right)$
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
2&4&0 \\
{ - 1}&{ - 2}&0 \\
0&0&0
\end{array}} \right)$
Perform row operations, we get
Multiply second row with $2$
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
2&4&0 \\
{ - 2}&{ - 4}&0 \\
0&0&0
\end{array}} \right)$
Now subtract second row from first row, we get
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
2&4&0 \\
0&0&0 \\
0&0&0
\end{array}} \right)$
Now divide first row by $2$ we get
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
1&2&0 \\
0&0&0 \\
0&0&0
\end{array}} \right)$
Now solve the matrix equation by
$ \Rightarrow \left( {\begin{array}{*{20}{c}}
1&2&0 \\
0&0&0 \\
0&0&0
\end{array}} \right)\,\left( {\begin{array}{*{20}{c}}
{{x_1}} \\
{{x_2}} \\
{{x_3}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
0 \\
0 \\
0
\end{array}} \right)$
From the above matrix equation we can find
$ \Rightarrow {x_1} + 2{x_2} = 0$
By considering ${x_2} = {x_2}$ and ${x_3} = {x_3}$
We can now find the value of ${x_1}$ we get
$ \Rightarrow {x_1} = - 2{x_2}$
$ \Rightarrow x = \left( {\begin{array}{*{20}{c}}
{ - 2{x_1}} \\
{{x_2}} \\
{{x_3}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 2} \\
1 \\
0
\end{array}} \right){x_2} + \left( {\begin{array}{*{20}{c}}
0 \\
0 \\
1
\end{array}} \right){x_3}$
$ \Rightarrow x = \left( {\begin{array}{*{20}{c}}
{ - 2} \\
1 \\
0
\end{array}} \right)$
Note: Here, we were dealing with a $3 \times 3$ system, and we found $3$ eigenvalue and $3$ corresponding eigenvectors.
If we had a $2 \times 2$ system, we would have found $2$ eigenvalue and $2$ corresponding eigenvectors.
In general, $n \times n$ system will produce $n$ eigenvalue and $n$ corresponding eigenvectors.
We could have easily chosen same value for ${x_{1\,}}$ and ${x_2}$, however it's usually more meaningful to choose a convenient starting value(usually for ${x_1}$ ) and then derive the resulting remaining values.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

