
Find the differential equation of $ y = {e^x}(A\cos x + B\sin x) $
Answer
576.9k+ views
Hint: The order of a differential equation is equal to the number of times the solution is differentiated. In simple terms, it is equal to the number of arbitrary constants present in the given solution of the differential equation. Since, there are two arbitrary constants, A and B. We have to divide this equation two times to get the answer.
Complete step-by-step answer:
In this question it is given that,
$ y = {e^x}(A\cos + B\sin x) $
And we have to find the differential equation
So, we know the value of $ y $ as
$ y = {e^x}(A\cos x + B\sin x) $ . . . . . (1)
Now differentiate both the sides with respect to $ x $
Then,
$ \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {{e^x}A\cos x + {e^x}B\sin x} \right) $
Now we use the addition rule of differentiation and multiplication rule of differentiation.
Therefore,
$ \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}{e^x}A\cos x + \dfrac{d}{{dx}}{e^x}B\sin x. $
$ = {e^x}A\cos x - A(\sin x){e^x} + {e^x}B\cos x + {e^x}B\sin x $
We can rearrange it as
$ \dfrac{{dy}}{{dx}} = \left( {{e^x}A\cos x + {e^x}B\sin x} \right) + ( - {e^x}A\sin x + {e^x}B\cos x) $
$ \Rightarrow \dfrac{{dy}}{{dx}} = {e^x}(A\cos x + B\sin x) + ( - {e^x}A\sin x + {e^x}B\cos x) $ . . . . . . (2)
And now, substitute the value, $ y = {e^x}(A\cos x + B\sin x) $ in the equation (2)
$ \Rightarrow \dfrac{{dy}}{{dx}} = y + ( - {e^x}.A\sin x + {e^x}B\cos x) $
$ \Rightarrow \dfrac{{dy}}{{dx}} - y = - {e^x}(A\sin x - {e^x}B\cos x) $ . . . . . . . (3)
Let $ \dfrac{{dy}}{{dx}} = y' $ …[means one differentiation of $ y = y' $ ]
$ \Rightarrow y' = y + [ - {e^x}.A\sin x + {e^x}.B\cos x]. $
Again differentiating both sides with respect to $ x. $ We get,
$ \dfrac{{dy'}}{{dx}} = \dfrac{{dy}}{{dx}} + \dfrac{d}{{dx}}[ - {e^x}.A\sin x + {e^x}.B\cos x] $
$ \Rightarrow \dfrac{{d(y')}}{{dx}} = \dfrac{{dy}}{{dx}} + \left[ { - {e^x}A\sin x - {e^x}A\cos x + {e^x}B\cos x - {e^x}B\sin x} \right] $
By rearranging it, we can write
$ \dfrac{{d(y')}}{{dx}} = \dfrac{{dy}}{{dx}} + \left[ {( - {e^x}A\cos x - {e^x}B\sin x) + ( - {e^x}A\sin x + {e^x}B\cos x)} \right] $
$ \Rightarrow \dfrac{{d(y')}}{{dx}} = \dfrac{{dy}}{{dx}} + \left[ { - {e^x}(A\cos x + B\sin x) - {e^x}(A\sin x - B\cos x)} \right] $ . . . . . . (4)
From equation (1) and (3) put value of \[y\] and $ \dfrac{{dy}}{{dx}} - y $ in equation (4)
$ \Rightarrow \dfrac{{d(y')}}{{dx}} = \dfrac{{dy}}{{dx}} + \left( { - y + \dfrac{{dy}}{{dx}} - y} \right) $
$ = 2\dfrac{{dy}}{{dx}} - 2y $
Now let the double differentiation of $ y = y'' $
Then, we can write,
$ y'' = 2y' - 2y $
$ y'' - 2y' + 2y = 0 $
Note: It is important to how many times we differentiate the given solutions to form the differential equation. Otherwise, in the question like this, where the derivative keeps on repeating. You will never see the end of the solution. It is also important to know that the final differential equation must not have any arbitrary constant left in it. That is why, we wrote the differential equation in terms of $ y $ to remove the arbitrary constants.
We must have knowledge of differentiation and its multiplication rule i.e. $ \left[ {\dfrac{d}{{dx}}(uy) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}} \right] $
Complete step-by-step answer:
In this question it is given that,
$ y = {e^x}(A\cos + B\sin x) $
And we have to find the differential equation
So, we know the value of $ y $ as
$ y = {e^x}(A\cos x + B\sin x) $ . . . . . (1)
Now differentiate both the sides with respect to $ x $
Then,
$ \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {{e^x}A\cos x + {e^x}B\sin x} \right) $
Now we use the addition rule of differentiation and multiplication rule of differentiation.
Therefore,
$ \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}{e^x}A\cos x + \dfrac{d}{{dx}}{e^x}B\sin x. $
$ = {e^x}A\cos x - A(\sin x){e^x} + {e^x}B\cos x + {e^x}B\sin x $
We can rearrange it as
$ \dfrac{{dy}}{{dx}} = \left( {{e^x}A\cos x + {e^x}B\sin x} \right) + ( - {e^x}A\sin x + {e^x}B\cos x) $
$ \Rightarrow \dfrac{{dy}}{{dx}} = {e^x}(A\cos x + B\sin x) + ( - {e^x}A\sin x + {e^x}B\cos x) $ . . . . . . (2)
And now, substitute the value, $ y = {e^x}(A\cos x + B\sin x) $ in the equation (2)
$ \Rightarrow \dfrac{{dy}}{{dx}} = y + ( - {e^x}.A\sin x + {e^x}B\cos x) $
$ \Rightarrow \dfrac{{dy}}{{dx}} - y = - {e^x}(A\sin x - {e^x}B\cos x) $ . . . . . . . (3)
Let $ \dfrac{{dy}}{{dx}} = y' $ …[means one differentiation of $ y = y' $ ]
$ \Rightarrow y' = y + [ - {e^x}.A\sin x + {e^x}.B\cos x]. $
Again differentiating both sides with respect to $ x. $ We get,
$ \dfrac{{dy'}}{{dx}} = \dfrac{{dy}}{{dx}} + \dfrac{d}{{dx}}[ - {e^x}.A\sin x + {e^x}.B\cos x] $
$ \Rightarrow \dfrac{{d(y')}}{{dx}} = \dfrac{{dy}}{{dx}} + \left[ { - {e^x}A\sin x - {e^x}A\cos x + {e^x}B\cos x - {e^x}B\sin x} \right] $
By rearranging it, we can write
$ \dfrac{{d(y')}}{{dx}} = \dfrac{{dy}}{{dx}} + \left[ {( - {e^x}A\cos x - {e^x}B\sin x) + ( - {e^x}A\sin x + {e^x}B\cos x)} \right] $
$ \Rightarrow \dfrac{{d(y')}}{{dx}} = \dfrac{{dy}}{{dx}} + \left[ { - {e^x}(A\cos x + B\sin x) - {e^x}(A\sin x - B\cos x)} \right] $ . . . . . . (4)
From equation (1) and (3) put value of \[y\] and $ \dfrac{{dy}}{{dx}} - y $ in equation (4)
$ \Rightarrow \dfrac{{d(y')}}{{dx}} = \dfrac{{dy}}{{dx}} + \left( { - y + \dfrac{{dy}}{{dx}} - y} \right) $
$ = 2\dfrac{{dy}}{{dx}} - 2y $
Now let the double differentiation of $ y = y'' $
Then, we can write,
$ y'' = 2y' - 2y $
$ y'' - 2y' + 2y = 0 $
Note: It is important to how many times we differentiate the given solutions to form the differential equation. Otherwise, in the question like this, where the derivative keeps on repeating. You will never see the end of the solution. It is also important to know that the final differential equation must not have any arbitrary constant left in it. That is why, we wrote the differential equation in terms of $ y $ to remove the arbitrary constants.
We must have knowledge of differentiation and its multiplication rule i.e. $ \left[ {\dfrac{d}{{dx}}(uy) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}} \right] $
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

