
Find the differential coefficient of \[\sin x\] by first principal.
Answer
587.4k+ views
Hint: In this problem, we need to use the first principle to obtain the derivative of the given expression. Next, use the trigonometric identities to solve the limit used in first principle. In this problem, the differential coefficient of \[\sin x\] is a measure of rate of change with respect to\[x\].
Complete step by step answer:
The derivative of a function is a measure of the rate of change. The derivative of a function \[y = f\left( x \right)\], using the first principle is shown below.
\[\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}\]
Now, substitute \[\sin x\] for \[f\left( x \right)\] in the above formula, to obtain the differential coefficient of \[\sin x\].
\[
\,\,\,\,\,\,\,\,\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {x + h} \right) - \sin \left( x \right)}}{h} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin x\cosh + \cos x\sinh - \sin x}}{h}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin x\left( {\cosh - 1} \right) + \cos x\sinh }}{h} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin x\left( {\cosh - 1} \right)}}{h} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\sinh }}{h} \\
\]
Further, simplify the above expression.
\[
\,\,\,\,\,\,\,\dfrac{{dy}}{{dx}} = \sin x\mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {\cosh - 1} \right)}}{h} + \cos x\mathop {\lim }\limits_{h \to 0} \dfrac{{\sinh }}{h} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \sin x\mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {1 - \dfrac{{{h^2}}}{{2!}} + \dfrac{{{h^4}}}{{4!}} - \ldots \ldots - 1} \right)}}{h} + \cos x\left( 1 \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\cos x = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - \ldots \ldots } \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = \sin x\mathop {\lim }\limits_{h \to 0} \dfrac{{\left( { - \dfrac{{{h^2}}}{{2!}} + \dfrac{{{h^4}}}{{4!}} - \ldots \ldots } \right)}}{h} + \cos x \\
\Rightarrow \dfrac{{dy}}{{dx}} = \sin x\mathop {\lim }\limits_{h \to 0} \left( { - \dfrac{h}{{2!}} + \dfrac{{{h^3}}}{{4!}} - \ldots \ldots } \right) + \cos x \\
\Rightarrow \dfrac{{dy}}{{dx}} = \sin x\left( 0 \right) + \cos x \\
\Rightarrow \dfrac{{dy}}{{dx}} = \cos x \\
\]
Thus, the differential coefficient of \[\sin x\] is \[\cos x\].
Note: If \[f\] be a function of time, then the derivative of \[f\] with respect to time represents the rate of change of \[f\] with respect to time.
The expansion of the \[\cos x\] using Taylor series is shown below.
\[\cos x = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - \dfrac{{{x^6}}}{{6!}} + \ldots \ldots\]
Complete step by step answer:
The derivative of a function is a measure of the rate of change. The derivative of a function \[y = f\left( x \right)\], using the first principle is shown below.
\[\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}\]
Now, substitute \[\sin x\] for \[f\left( x \right)\] in the above formula, to obtain the differential coefficient of \[\sin x\].
\[
\,\,\,\,\,\,\,\,\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {x + h} \right) - \sin \left( x \right)}}{h} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin x\cosh + \cos x\sinh - \sin x}}{h}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin x\left( {\cosh - 1} \right) + \cos x\sinh }}{h} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin x\left( {\cosh - 1} \right)}}{h} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\sinh }}{h} \\
\]
Further, simplify the above expression.
\[
\,\,\,\,\,\,\,\dfrac{{dy}}{{dx}} = \sin x\mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {\cosh - 1} \right)}}{h} + \cos x\mathop {\lim }\limits_{h \to 0} \dfrac{{\sinh }}{h} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \sin x\mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {1 - \dfrac{{{h^2}}}{{2!}} + \dfrac{{{h^4}}}{{4!}} - \ldots \ldots - 1} \right)}}{h} + \cos x\left( 1 \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\cos x = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - \ldots \ldots } \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = \sin x\mathop {\lim }\limits_{h \to 0} \dfrac{{\left( { - \dfrac{{{h^2}}}{{2!}} + \dfrac{{{h^4}}}{{4!}} - \ldots \ldots } \right)}}{h} + \cos x \\
\Rightarrow \dfrac{{dy}}{{dx}} = \sin x\mathop {\lim }\limits_{h \to 0} \left( { - \dfrac{h}{{2!}} + \dfrac{{{h^3}}}{{4!}} - \ldots \ldots } \right) + \cos x \\
\Rightarrow \dfrac{{dy}}{{dx}} = \sin x\left( 0 \right) + \cos x \\
\Rightarrow \dfrac{{dy}}{{dx}} = \cos x \\
\]
Thus, the differential coefficient of \[\sin x\] is \[\cos x\].
Note: If \[f\] be a function of time, then the derivative of \[f\] with respect to time represents the rate of change of \[f\] with respect to time.
The expansion of the \[\cos x\] using Taylor series is shown below.
\[\cos x = 1 - \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^4}}}{{4!}} - \dfrac{{{x^6}}}{{6!}} + \ldots \ldots\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

