Answer
Verified
418.2k+ views
Hint: First, find the amount for the compound interest compounded yearly by applying the formula $A = P{\left( {1 + \dfrac{r}{{100}}} \right)^t}$ for the first year and then the formula $A = P{\left( {1 + \dfrac{r}{{2 \times 100}}} \right)^{t \times 2}}$ for the next 6 months. Then subtract the principal from the amount to get the interest.
Then, find the amount for the compound interest compounded half-yearly by applying the formula $A = P{\left( {1 + \dfrac{r}{{2 \times 100}}} \right)^{t \times 2}}$. Then subtract the principal from the amount to get the interest. After that subtract the values of the interest to find the difference of the interest.
Complete step by step answer:
The formula for compound interest compounded yearly is,
$A = P{\left( {1 + \dfrac{r}{{100}}} \right)^t}$
The formula for compound interest compounded half-yearly is,
$A = P{\left( {1 + \dfrac{r}{{2 \times 100}}} \right)^{t \times 2}}$
Given: - Principal, P = Rs. 10000
Time, t = 18 months = 1.5 years
Rate, r = 10% p.a.
For the compound interest compounded yearly,
Calculate the amount for 1 year. Then calculate the amount for $\dfrac{1}{2}$ year.
For 1st year,
$P = 10000$
$t = 1$
$r = 10\% $
Then,
$A = 10000{\left( {1 + \dfrac{{10}}{{100}}} \right)^1}$
Cancel out common factors and take LCM,
$ \Rightarrow A = 10000\left( {\dfrac{{10 + 1}}{{10}}} \right)$
Add the terms and cancel out the common factor,
$ \Rightarrow A = 1000 \times 11$
Multiply the terms,
$ \Rightarrow A = 11000$
Now, for $\dfrac{1}{2}$ year,
$P = 11000$
$r = 10\% $
$t = \dfrac{1}{2}$
Substitute the values in the formula for compounded half-yearly,
$A = 11000{\left( {1 + \dfrac{{10}}{{2 \times 100}}} \right)^{\dfrac{1}{2} \times 2}}$
Cancel out the common factors,
$ \Rightarrow A = 11000{\left( {1 + \dfrac{1}{{20}}} \right)^1}$
Take LCM,
$ \Rightarrow A = 11000 \times \dfrac{{20 + 1}}{{20}}$
Cancel out the common factors,
$ \Rightarrow A = 550 \times 21$
Multiply the terms,
$ \Rightarrow A = {\text{Rs}}{\text{. }}11550$
So, the interest is,
$I = A - P$
Substitute the value of amount and principal,
$ \Rightarrow I = 11550 - 10000$
Subtract the term,
$ \Rightarrow I = {\text{Rs}}{\text{. }}1550$.....….. (1)
For the compound interest compounded half-yearly,
$P = 10000$
$r = 10\% $
$t = \dfrac{3}{2}$
Substitute the values in the formula for compounded half-yearly,
$A = 10000{\left( {1 + \dfrac{{10}}{{2 \times 100}}} \right)^{\dfrac{3}{2} \times 2}}$
Cancel out the common factors,
$ \Rightarrow A = 10000{\left( {1 + \dfrac{1}{{20}}} \right)^3}$
Take LCM,
$ \Rightarrow A = 10000{\left( {\dfrac{{20 + 1}}{{20}}} \right)^3}$
Add the terms,
$ \Rightarrow A = 10000 \times \dfrac{{21}}{{20}} \times \dfrac{{21}}{{20}} \times \dfrac{{21}}{{20}}$
Cancel the terms and multiply the remaining terms,
$ \Rightarrow A = {\text{Rs}}{\text{. }}11576.25$
So, the interest is,
$I = A - P$
Substitute the value of amount and principal,
$ \Rightarrow I = 11576.25 - 10000$
Subtract the term,
$ \Rightarrow I = {\text{Rs}}{\text{. }}1576.25$..........….. (2)
For the difference between two compound interest is,
$\therefore 1576.25 - 1550 = {\text{Rs}}{\text{. 2}}6.25$
Hence, the difference between the compound interest compounded yearly and half-yearly is Rs. 26.25.
Note: The students might make mistakes in calculating the amount for the 6 months compounded yearly.
Compound interest is the interest calculated on the principal and the interest accumulated over the previous period. It is different from the simple interest where interest is not added to the principal while calculating the interest during the next period.
Then, find the amount for the compound interest compounded half-yearly by applying the formula $A = P{\left( {1 + \dfrac{r}{{2 \times 100}}} \right)^{t \times 2}}$. Then subtract the principal from the amount to get the interest. After that subtract the values of the interest to find the difference of the interest.
Complete step by step answer:
The formula for compound interest compounded yearly is,
$A = P{\left( {1 + \dfrac{r}{{100}}} \right)^t}$
The formula for compound interest compounded half-yearly is,
$A = P{\left( {1 + \dfrac{r}{{2 \times 100}}} \right)^{t \times 2}}$
Given: - Principal, P = Rs. 10000
Time, t = 18 months = 1.5 years
Rate, r = 10% p.a.
For the compound interest compounded yearly,
Calculate the amount for 1 year. Then calculate the amount for $\dfrac{1}{2}$ year.
For 1st year,
$P = 10000$
$t = 1$
$r = 10\% $
Then,
$A = 10000{\left( {1 + \dfrac{{10}}{{100}}} \right)^1}$
Cancel out common factors and take LCM,
$ \Rightarrow A = 10000\left( {\dfrac{{10 + 1}}{{10}}} \right)$
Add the terms and cancel out the common factor,
$ \Rightarrow A = 1000 \times 11$
Multiply the terms,
$ \Rightarrow A = 11000$
Now, for $\dfrac{1}{2}$ year,
$P = 11000$
$r = 10\% $
$t = \dfrac{1}{2}$
Substitute the values in the formula for compounded half-yearly,
$A = 11000{\left( {1 + \dfrac{{10}}{{2 \times 100}}} \right)^{\dfrac{1}{2} \times 2}}$
Cancel out the common factors,
$ \Rightarrow A = 11000{\left( {1 + \dfrac{1}{{20}}} \right)^1}$
Take LCM,
$ \Rightarrow A = 11000 \times \dfrac{{20 + 1}}{{20}}$
Cancel out the common factors,
$ \Rightarrow A = 550 \times 21$
Multiply the terms,
$ \Rightarrow A = {\text{Rs}}{\text{. }}11550$
So, the interest is,
$I = A - P$
Substitute the value of amount and principal,
$ \Rightarrow I = 11550 - 10000$
Subtract the term,
$ \Rightarrow I = {\text{Rs}}{\text{. }}1550$.....….. (1)
For the compound interest compounded half-yearly,
$P = 10000$
$r = 10\% $
$t = \dfrac{3}{2}$
Substitute the values in the formula for compounded half-yearly,
$A = 10000{\left( {1 + \dfrac{{10}}{{2 \times 100}}} \right)^{\dfrac{3}{2} \times 2}}$
Cancel out the common factors,
$ \Rightarrow A = 10000{\left( {1 + \dfrac{1}{{20}}} \right)^3}$
Take LCM,
$ \Rightarrow A = 10000{\left( {\dfrac{{20 + 1}}{{20}}} \right)^3}$
Add the terms,
$ \Rightarrow A = 10000 \times \dfrac{{21}}{{20}} \times \dfrac{{21}}{{20}} \times \dfrac{{21}}{{20}}$
Cancel the terms and multiply the remaining terms,
$ \Rightarrow A = {\text{Rs}}{\text{. }}11576.25$
So, the interest is,
$I = A - P$
Substitute the value of amount and principal,
$ \Rightarrow I = 11576.25 - 10000$
Subtract the term,
$ \Rightarrow I = {\text{Rs}}{\text{. }}1576.25$..........….. (2)
For the difference between two compound interest is,
$\therefore 1576.25 - 1550 = {\text{Rs}}{\text{. 2}}6.25$
Hence, the difference between the compound interest compounded yearly and half-yearly is Rs. 26.25.
Note: The students might make mistakes in calculating the amount for the 6 months compounded yearly.
Compound interest is the interest calculated on the principal and the interest accumulated over the previous period. It is different from the simple interest where interest is not added to the principal while calculating the interest during the next period.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
Write a letter to the principal requesting him to grant class 10 english CBSE
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE