
Find the determinant of the given matrix \[\left[ {\begin{array}{*{20}{c}}
{18}&{40}&{89} \\
{40}&{89}&{198} \\
{89}&{198}&{440}
\end{array}} \right] = \]
A. -8
B. -6
C. -1
D. 0
Answer
511.2k+ views
Hint: Here we use the row operations of a matrix to solve for the value of the given determinant. We use row operations and transpose (switch columns into rows and vice-versa) the matrix when required.
* In a row operation we change the elements of a row by adding, subtracting, multiplying or dividing the elements of the row with reference to other row. Example: \[{R_n} \to {R_n} - 2{R_m}\]where m, n are row numbers.
* Determinant of a matrix is same as determinant of transpose of a matrix.
* We use the formula to solve a determinant
\[\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right| = a\left| {\begin{array}{*{20}{c}}
e&f \\
h&i
\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}
d&f \\
g&i
\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}
d&e \\
g&h
\end{array}} \right|.\]
Then use the following formula to calculate the determinant of order $2 \times 2.$
\[\left| {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right| = ad - bc.\]
Complete step-by-step answer:
We have the matrix \[\left[ {\begin{array}{*{20}{c}}
{18}&{40}&{89} \\
{40}&{89}&{198} \\
{89}&{198}&{440}
\end{array}} \right]\]
To find the determinant of the matrix we make the first row as simple as possible using row and column operations because when the elements of first row will be simple or minimum, then calculations will become easy.
\[{R_1},{R_2},{R_3}\]are the three rows from top to bottom and \[{C_1},{C_2},{C_3}\]are the three columns from left to right.
Now we take the matrix \[\left[ {\begin{array}{*{20}{c}}
{18}&{40}&{89} \\
{40}&{89}&{198} \\
{89}&{198}&{440}
\end{array}} \right]\]
We apply the row operation \[{R_2} \to {R_2} - 2{R_1}\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{18}&{40}&{89} \\
{40}&{89}&{198} \\
{89}&{198}&{440}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{18}&{40}&{89} \\
4&9&{20} \\
{89}&{198}&{440}
\end{array}} \right]\]
Again we apply row operation \[{R_3} \to {R_3} - 5{R_1}\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{18}&{40}&{89} \\
{40}&{89}&{198} \\
{89}&{198}&{440}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{18}&{40}&{89} \\
4&9&{20} \\
{ - 1}&{ - 2}&{ - 5}
\end{array}} \right]\]
Now we apply row operation \[{R_1} \to {R_1} + 20{R_3}\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{18}&{40}&{89} \\
{40}&{89}&{198} \\
{89}&{198}&{440}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2}&0&{ - 11} \\
4&9&{20} \\
{ - 1}&{ - 2}&{ - 5}
\end{array}} \right]\]
Now we apply row transformation \[{R_2} \to {R_2} + 2{R_1}\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{18}&{40}&{89} \\
{40}&{89}&{198} \\
{89}&{198}&{440}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2}&0&{ - 11} \\
0&9&{ - 2} \\
{ - 1}&{ - 2}&{ - 5}
\end{array}} \right]\]
Now we know that if a constant k is multiplied o all elements of the row, we can write the matrix as
\[\left| {\begin{array}{*{20}{c}}
a&b&c \\
{kd}&{ke}&{kf} \\
g&h&i
\end{array}} \right| = k\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|\]
So we take the value of -1 from First and second row outside the matrix.
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{18}&{40}&{89} \\
{40}&{89}&{198} \\
{89}&{198}&{440}
\end{array}} \right] = ( - 1)( - 1)\left[ {\begin{array}{*{20}{c}}
2&0&{11} \\
0&9&{ - 2} \\
1&2&5
\end{array}} \right]\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{18}&{40}&{89} \\
{40}&{89}&{198} \\
{89}&{198}&{440}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2&0&{11} \\
0&9&{ - 2} \\
1&2&5
\end{array}} \right]\]
Now we apply row transformation \[{R_1} \to {R_1} - 2{R_3}\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{18}&{40}&{89} \\
{40}&{89}&{198} \\
{89}&{198}&{440}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - 4}&1 \\
0&9&{ - 2} \\
1&2&5
\end{array}} \right]\]
Now we find the determinant of the matrix on RHS.
Since we know determinant of a matrix is same as determinant of transpose of a matrix.
\[\therefore \]Det \[\left[ {\begin{array}{*{20}{c}}
0&{ - 4}&1 \\
0&9&{ - 2} \\
1&2&5
\end{array}} \right] = \] Det \[\left[ {\begin{array}{*{20}{c}}
0&0&1 \\
{ - 4}&9&2 \\
1&{ - 2}&5
\end{array}} \right]\]
We know that determinant of a matrix can be calculated as:
Det \[\left[ {\begin{array}{*{20}{c}}
0&0&1 \\
{ - 4}&9&2 \\
1&{ - 2}&5
\end{array}} \right] = 0[9 \times 5 - 2 \times - 2] - 0[ - 4 \times 5 - 1 \times 2] + 1[ - 4 \times - 2 - 1 \times 9]\]
Det \[\left[ {\begin{array}{*{20}{c}}
0&0&1 \\
{ - 4}&9&2 \\
1&{ - 2}&5
\end{array}} \right] = 1[8 - 9]\]
Det \[\left[ {\begin{array}{*{20}{c}}
0&0&1 \\
{ - 4}&9&2 \\
1&{ - 2}&5
\end{array}} \right] = - 1\]
So, the correct option is C.
Note: Students many times make the mistake of writing negative signs after taking the transpose of the matrix which is not required because we use the property that transpose has the same determinant as that of matrix. Also, always try to apply row operations that make the matrix easier in the next step and not more complex.
* In a row operation we change the elements of a row by adding, subtracting, multiplying or dividing the elements of the row with reference to other row. Example: \[{R_n} \to {R_n} - 2{R_m}\]where m, n are row numbers.
* Determinant of a matrix is same as determinant of transpose of a matrix.
* We use the formula to solve a determinant
\[\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right| = a\left| {\begin{array}{*{20}{c}}
e&f \\
h&i
\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}
d&f \\
g&i
\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}
d&e \\
g&h
\end{array}} \right|.\]
Then use the following formula to calculate the determinant of order $2 \times 2.$
\[\left| {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right| = ad - bc.\]
Complete step-by-step answer:
We have the matrix \[\left[ {\begin{array}{*{20}{c}}
{18}&{40}&{89} \\
{40}&{89}&{198} \\
{89}&{198}&{440}
\end{array}} \right]\]
To find the determinant of the matrix we make the first row as simple as possible using row and column operations because when the elements of first row will be simple or minimum, then calculations will become easy.
\[{R_1},{R_2},{R_3}\]are the three rows from top to bottom and \[{C_1},{C_2},{C_3}\]are the three columns from left to right.
Now we take the matrix \[\left[ {\begin{array}{*{20}{c}}
{18}&{40}&{89} \\
{40}&{89}&{198} \\
{89}&{198}&{440}
\end{array}} \right]\]
We apply the row operation \[{R_2} \to {R_2} - 2{R_1}\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{18}&{40}&{89} \\
{40}&{89}&{198} \\
{89}&{198}&{440}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{18}&{40}&{89} \\
4&9&{20} \\
{89}&{198}&{440}
\end{array}} \right]\]
Again we apply row operation \[{R_3} \to {R_3} - 5{R_1}\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{18}&{40}&{89} \\
{40}&{89}&{198} \\
{89}&{198}&{440}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{18}&{40}&{89} \\
4&9&{20} \\
{ - 1}&{ - 2}&{ - 5}
\end{array}} \right]\]
Now we apply row operation \[{R_1} \to {R_1} + 20{R_3}\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{18}&{40}&{89} \\
{40}&{89}&{198} \\
{89}&{198}&{440}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2}&0&{ - 11} \\
4&9&{20} \\
{ - 1}&{ - 2}&{ - 5}
\end{array}} \right]\]
Now we apply row transformation \[{R_2} \to {R_2} + 2{R_1}\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{18}&{40}&{89} \\
{40}&{89}&{198} \\
{89}&{198}&{440}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 2}&0&{ - 11} \\
0&9&{ - 2} \\
{ - 1}&{ - 2}&{ - 5}
\end{array}} \right]\]
Now we know that if a constant k is multiplied o all elements of the row, we can write the matrix as
\[\left| {\begin{array}{*{20}{c}}
a&b&c \\
{kd}&{ke}&{kf} \\
g&h&i
\end{array}} \right| = k\left| {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right|\]
So we take the value of -1 from First and second row outside the matrix.
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{18}&{40}&{89} \\
{40}&{89}&{198} \\
{89}&{198}&{440}
\end{array}} \right] = ( - 1)( - 1)\left[ {\begin{array}{*{20}{c}}
2&0&{11} \\
0&9&{ - 2} \\
1&2&5
\end{array}} \right]\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{18}&{40}&{89} \\
{40}&{89}&{198} \\
{89}&{198}&{440}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2&0&{11} \\
0&9&{ - 2} \\
1&2&5
\end{array}} \right]\]
Now we apply row transformation \[{R_1} \to {R_1} - 2{R_3}\]
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{18}&{40}&{89} \\
{40}&{89}&{198} \\
{89}&{198}&{440}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
0&{ - 4}&1 \\
0&9&{ - 2} \\
1&2&5
\end{array}} \right]\]
Now we find the determinant of the matrix on RHS.
Since we know determinant of a matrix is same as determinant of transpose of a matrix.
\[\therefore \]Det \[\left[ {\begin{array}{*{20}{c}}
0&{ - 4}&1 \\
0&9&{ - 2} \\
1&2&5
\end{array}} \right] = \] Det \[\left[ {\begin{array}{*{20}{c}}
0&0&1 \\
{ - 4}&9&2 \\
1&{ - 2}&5
\end{array}} \right]\]
We know that determinant of a matrix can be calculated as:
Det \[\left[ {\begin{array}{*{20}{c}}
0&0&1 \\
{ - 4}&9&2 \\
1&{ - 2}&5
\end{array}} \right] = 0[9 \times 5 - 2 \times - 2] - 0[ - 4 \times 5 - 1 \times 2] + 1[ - 4 \times - 2 - 1 \times 9]\]
Det \[\left[ {\begin{array}{*{20}{c}}
0&0&1 \\
{ - 4}&9&2 \\
1&{ - 2}&5
\end{array}} \right] = 1[8 - 9]\]
Det \[\left[ {\begin{array}{*{20}{c}}
0&0&1 \\
{ - 4}&9&2 \\
1&{ - 2}&5
\end{array}} \right] = - 1\]
So, the correct option is C.
Note: Students many times make the mistake of writing negative signs after taking the transpose of the matrix which is not required because we use the property that transpose has the same determinant as that of matrix. Also, always try to apply row operations that make the matrix easier in the next step and not more complex.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
