
How do you find the derivatives of\[f\left( x \right)=1-{{x}^{2}}\] using the limit process?
Answer
456.6k+ views
Hint: These types of problems are pretty straight forward and are very easy to solve. For problems like these we need to remember all the concepts and equations of the theory of limits including the first principle of limits to find the derivatives. According to the first principle of limits, say we have a function \[f\left( x \right)\] and we consider a point on the curve \[y=f\left( x \right)\] as \[\left( x,f\left( x \right) \right)\] and another point \[\left( x+h,f\left( x+h \right) \right)\] , where \[h\] is an infinitesimal small quantity, then the derivative of the function $f\left( x \right)$ is defined as,
$f'\left( x \right)=\dfrac{dy}{dx}=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$
Now, substituting the value of the function \[f\left( x \right)\] in the above equation, we can easily find out its derivative.
Complete step by step answer:
Now, we start off the solution to the given problem by writing that,
We substitute the value of the function \[f\left( x \right)\] in the above equation as,
\[\begin{align}
& {{f}^{'}}\left( x \right)=\dfrac{dy}{dx}=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h} \\
& \Rightarrow {{f}^{'}}\left( x \right)=\dfrac{dy}{dx}=\displaystyle \lim_{h \to 0}\dfrac{\left( 1-{{\left( x+h \right)}^{2}} \right)-\left( 1-{{x}^{2}} \right)}{h} \\
\end{align}\]
On breaking up the terms and evaluating we get,
\[\begin{align}
& \Rightarrow {{f}^{'}}\left( x \right)=\dfrac{dy}{dx}=\displaystyle \lim_{h \to 0}\dfrac{\left( 1-{{x}^{2}}-{{h}^{2}}-2hx \right)-\left( 1-{{x}^{2}} \right)}{h} \\
& \Rightarrow {{f}^{'}}\left( x \right)=\dfrac{dy}{dx}=\displaystyle \lim_{h \to 0}\dfrac{1-{{x}^{2}}-{{h}^{2}}-2hx-1+{{x}^{2}}}{h} \\
\end{align}\]
Now, cancelling off the positive and negative same terms we get,
\[\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{dy}{dx}=\displaystyle \lim_{h \to 0}\dfrac{-{{h}^{2}}-2hx}{h}\]
Now, dividing both the terms by \[h\] we get,
\[\begin{align}
& \Rightarrow {{f}^{'}}\left( x \right)=\dfrac{dy}{dx}=\displaystyle \lim_{h \to 0}-\dfrac{{{h}^{2}}}{h}-\dfrac{2hx}{h} \\
& \Rightarrow {{f}^{'}}\left( x \right)=\dfrac{dy}{dx}=\displaystyle \lim_{h \to 0}-h-2x \\
\end{align}\]
Now, putting the value of \[h=0\] , we get,
\[\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{dy}{dx}=-2x\]
Thus our answer to the given problem is \[-2x\] .
Note:
For these types of problems which involve finding the derivative using the limit process, we need to first of all remember the theory of limits and all the formulae and equations involving limits, failing which solving of the problem may seem impossible. We then need to plug in the given function into the known equation that we have of the limits and then evaluate the limit normally as we do when we solve simple limit problems. We can also cross check the answer to the problem by performing normal differentiation to the given function.
$f'\left( x \right)=\dfrac{dy}{dx}=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$
Now, substituting the value of the function \[f\left( x \right)\] in the above equation, we can easily find out its derivative.
Complete step by step answer:
Now, we start off the solution to the given problem by writing that,
We substitute the value of the function \[f\left( x \right)\] in the above equation as,
\[\begin{align}
& {{f}^{'}}\left( x \right)=\dfrac{dy}{dx}=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h} \\
& \Rightarrow {{f}^{'}}\left( x \right)=\dfrac{dy}{dx}=\displaystyle \lim_{h \to 0}\dfrac{\left( 1-{{\left( x+h \right)}^{2}} \right)-\left( 1-{{x}^{2}} \right)}{h} \\
\end{align}\]
On breaking up the terms and evaluating we get,
\[\begin{align}
& \Rightarrow {{f}^{'}}\left( x \right)=\dfrac{dy}{dx}=\displaystyle \lim_{h \to 0}\dfrac{\left( 1-{{x}^{2}}-{{h}^{2}}-2hx \right)-\left( 1-{{x}^{2}} \right)}{h} \\
& \Rightarrow {{f}^{'}}\left( x \right)=\dfrac{dy}{dx}=\displaystyle \lim_{h \to 0}\dfrac{1-{{x}^{2}}-{{h}^{2}}-2hx-1+{{x}^{2}}}{h} \\
\end{align}\]
Now, cancelling off the positive and negative same terms we get,
\[\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{dy}{dx}=\displaystyle \lim_{h \to 0}\dfrac{-{{h}^{2}}-2hx}{h}\]
Now, dividing both the terms by \[h\] we get,
\[\begin{align}
& \Rightarrow {{f}^{'}}\left( x \right)=\dfrac{dy}{dx}=\displaystyle \lim_{h \to 0}-\dfrac{{{h}^{2}}}{h}-\dfrac{2hx}{h} \\
& \Rightarrow {{f}^{'}}\left( x \right)=\dfrac{dy}{dx}=\displaystyle \lim_{h \to 0}-h-2x \\
\end{align}\]
Now, putting the value of \[h=0\] , we get,
\[\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{dy}{dx}=-2x\]
Thus our answer to the given problem is \[-2x\] .
Note:
For these types of problems which involve finding the derivative using the limit process, we need to first of all remember the theory of limits and all the formulae and equations involving limits, failing which solving of the problem may seem impossible. We then need to plug in the given function into the known equation that we have of the limits and then evaluate the limit normally as we do when we solve simple limit problems. We can also cross check the answer to the problem by performing normal differentiation to the given function.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
