
Find the derivative of the following:
\[-\dfrac{2651}{504\sqrt[315]{{{x}^{2966}}}}\]
Answer
607.8k+ views
Hint: Don’t get confused with the large numbers. Use the formula \[\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{\dfrac{n}{m}}}} \right)=\dfrac{d}{dx}\left( {{x}^{-\dfrac{n}{m}}} \right)=\dfrac{-n}{m}{{x}^{\dfrac{-n}{m}-1}}\]to find the derivative.
Complete step by step solution:
The given function is \[-\dfrac{2651}{504\sqrt[315]{{{x}^{2966}}}}\].
Taking out the constant term, we get
\[\dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{-2651}{504}\times \dfrac{d}{dx}\left\{ \dfrac{1}{\sqrt[315]{{{x}^{2966}}}} \right\}\]
The can be written as,
\[\dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{-2651}{504}\times \dfrac{d}{dx}\left\{ \dfrac{1}{{{x}^{\dfrac{2966}{315}}}} \right\}\]
So the above equation can be re-written using the formula \[\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{\dfrac{n}{m}}}} \right)=\dfrac{d}{dx}\left( {{x}^{-\dfrac{n}{m}}} \right)=\dfrac{-n}{m}{{x}^{\dfrac{-n}{m}-1}},\]
\[\begin{align}
& \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{-2651}{504}\times \dfrac{-2966}{315}\times {{x}^{\dfrac{-2966}{315}-1}} \\
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{-2651}{504}\times \dfrac{-2966}{315}\times {{x}^{\dfrac{-2966-315}{315}}} \\
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{-2651}{504}\times \dfrac{-2966}{315}\times {{x}^{\dfrac{-3281}{315}}} \\
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 2966}{504\times 315}\times \dfrac{1}{\sqrt[315]{{{x}^{3281}}}} \\
\end{align}\]
Dividing throughout by ‘2’, we get
\[\Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{\sqrt[315]{{{x}^{3150+131}}}}\]
Now applying the formula \[{{x}^{m+n}}={{x}^{m}}.{{x}^{n}}\] under the root, we have
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{\sqrt[315]{{{x}^{3150}}.{{x}^{131}}}} \\
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{\sqrt[315]{{{x}^{3150}}}\times \sqrt[315]{{{x}^{131}}}} \\
\end{align}\]
Now, by applying the formula \[{{x}^{mn}}={{({{x}^{m}})}^{n}}\] under the root, we get
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{\sqrt[315]{{{({{x}^{10}})}^{315}}}\times \sqrt[315]{{{x}^{131}}}} \\
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{{{x}^{10}}\times \sqrt[315]{{{x}^{131}}}} \\
\end{align}\]
Here we can observe that $(315-131=184)$, so we will rationalise by \[\sqrt[315]{{{x}^{184}}}\], we get
\[\begin{align}
& \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\dfrac{1}{{{x}^{10}}}\times \dfrac{1}{\sqrt[315]{{{x}^{131}}}}\times \dfrac{\sqrt[315]{{{x}^{184}}}}{\sqrt[315]{{{x}^{184}}}} \\
& \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{{{x}^{10}}}\times \dfrac{\sqrt[315]{{{x}^{184}}}}{\sqrt[315]{{{x}^{131}}\times {{x}^{184}}}} \\
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{{{x}^{10}}}\dfrac{\sqrt[315]{{{x}^{184}}}}{\sqrt[315]{{{x}^{315}}}} \\
& \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{{{x}^{10}}}\dfrac{\sqrt[315]{{{x}^{184}}}}{x} \\
\end{align}\]
\[\dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\dfrac{\sqrt[315]{{{x}^{184}}}}{{{x}^{11}}}\]
Note: In this problem looking at the bigger values the student may get confused. We should always try to solve the problem using a simple basic formula. The student sometimes gets confused to remove the constant term while deriving and will make mistakes.
Complete step by step solution:
The given function is \[-\dfrac{2651}{504\sqrt[315]{{{x}^{2966}}}}\].
Taking out the constant term, we get
\[\dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{-2651}{504}\times \dfrac{d}{dx}\left\{ \dfrac{1}{\sqrt[315]{{{x}^{2966}}}} \right\}\]
The can be written as,
\[\dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{-2651}{504}\times \dfrac{d}{dx}\left\{ \dfrac{1}{{{x}^{\dfrac{2966}{315}}}} \right\}\]
So the above equation can be re-written using the formula \[\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{\dfrac{n}{m}}}} \right)=\dfrac{d}{dx}\left( {{x}^{-\dfrac{n}{m}}} \right)=\dfrac{-n}{m}{{x}^{\dfrac{-n}{m}-1}},\]
\[\begin{align}
& \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{-2651}{504}\times \dfrac{-2966}{315}\times {{x}^{\dfrac{-2966}{315}-1}} \\
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{-2651}{504}\times \dfrac{-2966}{315}\times {{x}^{\dfrac{-2966-315}{315}}} \\
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{-2651}{504}\times \dfrac{-2966}{315}\times {{x}^{\dfrac{-3281}{315}}} \\
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 2966}{504\times 315}\times \dfrac{1}{\sqrt[315]{{{x}^{3281}}}} \\
\end{align}\]
Dividing throughout by ‘2’, we get
\[\Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{\sqrt[315]{{{x}^{3150+131}}}}\]
Now applying the formula \[{{x}^{m+n}}={{x}^{m}}.{{x}^{n}}\] under the root, we have
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{\sqrt[315]{{{x}^{3150}}.{{x}^{131}}}} \\
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{\sqrt[315]{{{x}^{3150}}}\times \sqrt[315]{{{x}^{131}}}} \\
\end{align}\]
Now, by applying the formula \[{{x}^{mn}}={{({{x}^{m}})}^{n}}\] under the root, we get
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{\sqrt[315]{{{({{x}^{10}})}^{315}}}\times \sqrt[315]{{{x}^{131}}}} \\
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{{{x}^{10}}\times \sqrt[315]{{{x}^{131}}}} \\
\end{align}\]
Here we can observe that $(315-131=184)$, so we will rationalise by \[\sqrt[315]{{{x}^{184}}}\], we get
\[\begin{align}
& \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\dfrac{1}{{{x}^{10}}}\times \dfrac{1}{\sqrt[315]{{{x}^{131}}}}\times \dfrac{\sqrt[315]{{{x}^{184}}}}{\sqrt[315]{{{x}^{184}}}} \\
& \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{{{x}^{10}}}\times \dfrac{\sqrt[315]{{{x}^{184}}}}{\sqrt[315]{{{x}^{131}}\times {{x}^{184}}}} \\
& \Rightarrow \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{{{x}^{10}}}\dfrac{\sqrt[315]{{{x}^{184}}}}{\sqrt[315]{{{x}^{315}}}} \\
& \dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\times \dfrac{1}{{{x}^{10}}}\dfrac{\sqrt[315]{{{x}^{184}}}}{x} \\
\end{align}\]
\[\dfrac{d}{dx}\left\{ \dfrac{-2651}{504\sqrt[315]{{{x}^{2966}}}} \right\}=\dfrac{2651\times 1483}{252\times 315}\dfrac{\sqrt[315]{{{x}^{184}}}}{{{x}^{11}}}\]
Note: In this problem looking at the bigger values the student may get confused. We should always try to solve the problem using a simple basic formula. The student sometimes gets confused to remove the constant term while deriving and will make mistakes.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

