
How do you find the derivative of \[\sqrt {x + 1} \] using limits?
Answer
546.3k+ views
Hint: In this question we have to find the derivative of the given function using limits , which is given by the formula \[\dfrac{d}{{dx}}f = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}\], now here \[f\left( x \right) = \sqrt {x + 1} \] substitute the value in the limit formula now rationalise the numerator and simplify the expression by applying limits , we will get the required result.
Complete step by step solution:
Given expression is \[\sqrt {x + 1} \],
Now using the limit formula which is given by \[\dfrac{d}{{dx}}f = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}\],
Given \[f\left( x \right) = \sqrt {x + 1} \],
Now derivate on both sides we get,
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = \dfrac{d}{{dx}}\sqrt {x + 1} \],
Using limit formula we get,
Here \[f\left( {x + h} \right)\]will be \[\sqrt {x + h + 1} \] and \[f\left( x \right) = \sqrt {x + 1} \], now substitute the values in the formula we get,
\[ \Rightarrow \dfrac{d}{{dx}}\sqrt {x + 1} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sqrt {x + h + 1} - \sqrt {x + 1} }}{h}\],
Now rationalize the numerator with its conjugate we get,
\[ \Rightarrow \dfrac{d}{{dx}}\sqrt {x + 1} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sqrt {x + h + 1} - \sqrt {x + 1} }}{h} \times \dfrac{{\sqrt {x + h + 1} + \sqrt {x + 1} }}{{\sqrt {x + h + 1} + \sqrt {x + 1} }}\],
Now simplifying we get,
\[ \Rightarrow \dfrac{d}{{dx}}\sqrt {x + 1} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {\sqrt {x + h + 1} - \sqrt {x + 1} } \right) \times \left( {\sqrt {x + h + 1} + \sqrt {x + 1} } \right)}}{{h\left( {\sqrt {x + h + 1} + \sqrt {x + 1} } \right)}}\],
Now applying algebraic identity \[\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)\],
\[ \Rightarrow \dfrac{d}{{dx}}\sqrt {x + 1} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {{{\left( {\sqrt {x + h + 1} } \right)}^2} - {{\left( {\sqrt {x + 1} } \right)}^2}} \right)}}{{h\left( {\sqrt {x + h + 1} + \sqrt {x + 1} } \right)}}\],
Now simplifying we get,
\[ \Rightarrow \dfrac{d}{{dx}}\sqrt {x + 1} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {x + h + 1 - x - 1} \right)}}{{h\left( {\sqrt {x + h + 1} + \sqrt {x + 1} } \right)}}\],
Again simplifying we get,
\[ \Rightarrow \dfrac{d}{{dx}}\sqrt {x + 1} = \mathop {\lim }\limits_{h \to 0} \dfrac{h}{{h\left( {\sqrt {x + h + 1} + \sqrt {x + 1} } \right)}}\],
Now eliminating the like terms we get,
\[ \Rightarrow \dfrac{d}{{dx}}\sqrt {x + 1} = \mathop {\lim }\limits_{h \to 0} \dfrac{1}{{\left( {\sqrt {x + h + 1} + \sqrt {x + 1} } \right)}}\],
Now applying the limits directly we get,
\[ \Rightarrow \dfrac{d}{{dx}}\sqrt {x + 1} = \dfrac{1}{{\left( {\sqrt {x + 0 + 1} + \sqrt {x + 1} } \right)}}\],
Now simplifying we get,
\[ \Rightarrow \dfrac{d}{{dx}}\sqrt {x + 1} = \dfrac{1}{{\left( {\sqrt {x + 1} + \sqrt {x + 1} } \right)}}\],
Further simplifying we get,
\[ \Rightarrow \dfrac{d}{{dx}}\sqrt {x + 1} = \dfrac{1}{{2\sqrt {x + 1} }}\],
So, the derivative of the function is \[\dfrac{1}{{2\sqrt {x + 1} }}\].
Final Answer:
\[\therefore \]The derivative of the given function \[\sqrt {x + 1} \]will be equal to \[\dfrac{1}{{2\sqrt {x + 1} }}\].
Note:
Because differential calculus is based on the definition of the derivative, and the definition of the derivative involves a limit, there is a sense in which all of calculus rests on limits. In addition, the limit involved in the limit definition of the derivative is one that always generates an indeterminate form of \[\dfrac{0}{0}\]. If \[f\]is a differentiable function for which \[{f^{'}}\left( x \right)\] exists, then when we consider:
\[\dfrac{d}{{dx}}{f^{'}}\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}\],
If the limit exists, \[f\] is said to be differentiable at \[x\], otherwise \[f\] is non-differentiable at \[x\].
Complete step by step solution:
Given expression is \[\sqrt {x + 1} \],
Now using the limit formula which is given by \[\dfrac{d}{{dx}}f = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}\],
Given \[f\left( x \right) = \sqrt {x + 1} \],
Now derivate on both sides we get,
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = \dfrac{d}{{dx}}\sqrt {x + 1} \],
Using limit formula we get,
Here \[f\left( {x + h} \right)\]will be \[\sqrt {x + h + 1} \] and \[f\left( x \right) = \sqrt {x + 1} \], now substitute the values in the formula we get,
\[ \Rightarrow \dfrac{d}{{dx}}\sqrt {x + 1} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sqrt {x + h + 1} - \sqrt {x + 1} }}{h}\],
Now rationalize the numerator with its conjugate we get,
\[ \Rightarrow \dfrac{d}{{dx}}\sqrt {x + 1} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sqrt {x + h + 1} - \sqrt {x + 1} }}{h} \times \dfrac{{\sqrt {x + h + 1} + \sqrt {x + 1} }}{{\sqrt {x + h + 1} + \sqrt {x + 1} }}\],
Now simplifying we get,
\[ \Rightarrow \dfrac{d}{{dx}}\sqrt {x + 1} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {\sqrt {x + h + 1} - \sqrt {x + 1} } \right) \times \left( {\sqrt {x + h + 1} + \sqrt {x + 1} } \right)}}{{h\left( {\sqrt {x + h + 1} + \sqrt {x + 1} } \right)}}\],
Now applying algebraic identity \[\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)\],
\[ \Rightarrow \dfrac{d}{{dx}}\sqrt {x + 1} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {{{\left( {\sqrt {x + h + 1} } \right)}^2} - {{\left( {\sqrt {x + 1} } \right)}^2}} \right)}}{{h\left( {\sqrt {x + h + 1} + \sqrt {x + 1} } \right)}}\],
Now simplifying we get,
\[ \Rightarrow \dfrac{d}{{dx}}\sqrt {x + 1} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {x + h + 1 - x - 1} \right)}}{{h\left( {\sqrt {x + h + 1} + \sqrt {x + 1} } \right)}}\],
Again simplifying we get,
\[ \Rightarrow \dfrac{d}{{dx}}\sqrt {x + 1} = \mathop {\lim }\limits_{h \to 0} \dfrac{h}{{h\left( {\sqrt {x + h + 1} + \sqrt {x + 1} } \right)}}\],
Now eliminating the like terms we get,
\[ \Rightarrow \dfrac{d}{{dx}}\sqrt {x + 1} = \mathop {\lim }\limits_{h \to 0} \dfrac{1}{{\left( {\sqrt {x + h + 1} + \sqrt {x + 1} } \right)}}\],
Now applying the limits directly we get,
\[ \Rightarrow \dfrac{d}{{dx}}\sqrt {x + 1} = \dfrac{1}{{\left( {\sqrt {x + 0 + 1} + \sqrt {x + 1} } \right)}}\],
Now simplifying we get,
\[ \Rightarrow \dfrac{d}{{dx}}\sqrt {x + 1} = \dfrac{1}{{\left( {\sqrt {x + 1} + \sqrt {x + 1} } \right)}}\],
Further simplifying we get,
\[ \Rightarrow \dfrac{d}{{dx}}\sqrt {x + 1} = \dfrac{1}{{2\sqrt {x + 1} }}\],
So, the derivative of the function is \[\dfrac{1}{{2\sqrt {x + 1} }}\].
Final Answer:
\[\therefore \]The derivative of the given function \[\sqrt {x + 1} \]will be equal to \[\dfrac{1}{{2\sqrt {x + 1} }}\].
Note:
Because differential calculus is based on the definition of the derivative, and the definition of the derivative involves a limit, there is a sense in which all of calculus rests on limits. In addition, the limit involved in the limit definition of the derivative is one that always generates an indeterminate form of \[\dfrac{0}{0}\]. If \[f\]is a differentiable function for which \[{f^{'}}\left( x \right)\] exists, then when we consider:
\[\dfrac{d}{{dx}}{f^{'}}\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}\],
If the limit exists, \[f\] is said to be differentiable at \[x\], otherwise \[f\] is non-differentiable at \[x\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

