
How do you find the derivative of $\ln \left( {\dfrac{3}{x}} \right)$ with respect to x ?
Answer
482.1k+ views
Hint: In the given problem, we are required to differentiate $\ln \left( {\dfrac{3}{x}} \right)$ with respect to x. Since, $\ln \left( {\dfrac{3}{x}} \right)$ is a composite function, so we will have to apply chain rule of differentiation in the process of differentiating $\ln \left( {\dfrac{3}{x}} \right)$ . So, differentiation of $\ln \left( {\dfrac{3}{x}} \right)$ with respect to x will be done layer by layer using the chain rule of differentiation. Also the derivative of $\ln \left( x \right)$with respect to $x$ must be remembered.
Complete step by step answer:
To find derivative of $\ln \left( {\dfrac{3}{x}} \right)$ with respect to x we have to find differentiate $\ln \left( {\dfrac{3}{x}} \right)$with respect to x.
So, Derivative of $\ln \left( {\dfrac{3}{x}} \right)$ with respect to x can be calculated as $\dfrac{d}{{dx}}\left( {\ln \left( {\dfrac{3}{x}} \right)} \right)$ .
Now, $\dfrac{d}{{dx}}\left( {\ln \left( {\dfrac{3}{x}} \right)} \right)$
First we differentiate $\ln \left( {\dfrac{3}{x}} \right)$ with respect to $\left( {\dfrac{3}{x}} \right)$, and then differentiate $\left( {\dfrac{3}{x}} \right)$ with respect to x.
Now, Let us assume $u = \left( {\dfrac{3}{x}} \right)$. So substituting $\left( {\dfrac{3}{x}} \right)$as $u$, we get,
$ = $\[\dfrac{d}{{dx}}\left( {\ln \left( u \right)} \right)\]
Now, we know that the derivative of \[\ln t\] with respect to \[t\] is \[\left( {\dfrac{1}{t}} \right)\]. Hence, we get,
$ = $$\dfrac{1}{u}\dfrac{{du}}{{dx}}$
Now, putting back $u$as $\left( {\dfrac{3}{x}} \right)$, we get,
$ = $$\dfrac{1}{{\left( {\dfrac{3}{x}} \right)}}\dfrac{{d\left( {\dfrac{3}{x}} \right)}}{{dx}}$ because \[\dfrac{{du}}{{dx}} = \dfrac{{d\left( {\dfrac{3}{x}} \right)}}{{dx}}\]
Now, we know the power rule of differentiation. Hence, we can apply the power rule so as to calculate the derivative of $\left( {\dfrac{3}{x}} \right)$ with respect to x.
$ = $$\dfrac{x}{3}\left( {\dfrac{{ - 3}}{{{x^2}}}} \right)$
Cancelling the term in numerator and denominator, we get,
$ = $$\left( {\dfrac{{ - 1}}{x}} \right)$
So, the derivative of $\ln \left( {\dfrac{3}{x}} \right)$ with respect to $x$is $\left( {\dfrac{{ - 1}}{x}} \right)$.
Note:The given problem may also be solved using the first principle of differentiation. The derivatives of basic trigonometric functions must be learned by heart in order to find derivatives of complex composite functions using chain rule of differentiation. The chain rule of differentiation involves differentiating a composite by introducing new unknowns to ease the process and examine the behaviour of function layer by layer.
Complete step by step answer:
To find derivative of $\ln \left( {\dfrac{3}{x}} \right)$ with respect to x we have to find differentiate $\ln \left( {\dfrac{3}{x}} \right)$with respect to x.
So, Derivative of $\ln \left( {\dfrac{3}{x}} \right)$ with respect to x can be calculated as $\dfrac{d}{{dx}}\left( {\ln \left( {\dfrac{3}{x}} \right)} \right)$ .
Now, $\dfrac{d}{{dx}}\left( {\ln \left( {\dfrac{3}{x}} \right)} \right)$
First we differentiate $\ln \left( {\dfrac{3}{x}} \right)$ with respect to $\left( {\dfrac{3}{x}} \right)$, and then differentiate $\left( {\dfrac{3}{x}} \right)$ with respect to x.
Now, Let us assume $u = \left( {\dfrac{3}{x}} \right)$. So substituting $\left( {\dfrac{3}{x}} \right)$as $u$, we get,
$ = $\[\dfrac{d}{{dx}}\left( {\ln \left( u \right)} \right)\]
Now, we know that the derivative of \[\ln t\] with respect to \[t\] is \[\left( {\dfrac{1}{t}} \right)\]. Hence, we get,
$ = $$\dfrac{1}{u}\dfrac{{du}}{{dx}}$
Now, putting back $u$as $\left( {\dfrac{3}{x}} \right)$, we get,
$ = $$\dfrac{1}{{\left( {\dfrac{3}{x}} \right)}}\dfrac{{d\left( {\dfrac{3}{x}} \right)}}{{dx}}$ because \[\dfrac{{du}}{{dx}} = \dfrac{{d\left( {\dfrac{3}{x}} \right)}}{{dx}}\]
Now, we know the power rule of differentiation. Hence, we can apply the power rule so as to calculate the derivative of $\left( {\dfrac{3}{x}} \right)$ with respect to x.
$ = $$\dfrac{x}{3}\left( {\dfrac{{ - 3}}{{{x^2}}}} \right)$
Cancelling the term in numerator and denominator, we get,
$ = $$\left( {\dfrac{{ - 1}}{x}} \right)$
So, the derivative of $\ln \left( {\dfrac{3}{x}} \right)$ with respect to $x$is $\left( {\dfrac{{ - 1}}{x}} \right)$.
Note:The given problem may also be solved using the first principle of differentiation. The derivatives of basic trigonometric functions must be learned by heart in order to find derivatives of complex composite functions using chain rule of differentiation. The chain rule of differentiation involves differentiating a composite by introducing new unknowns to ease the process and examine the behaviour of function layer by layer.
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Sanjeevani booti brought about by Lord Hanuman to cure class 11 biology CBSE

A police jeep on patrol duty on a national highway class 11 physics CBSE

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE
