
How do you find the derivative of $\ln \left( {\dfrac{3}{x}} \right)$ with respect to x ?
Answer
539.7k+ views
Hint: In the given problem, we are required to differentiate $\ln \left( {\dfrac{3}{x}} \right)$ with respect to x. Since, $\ln \left( {\dfrac{3}{x}} \right)$ is a composite function, so we will have to apply chain rule of differentiation in the process of differentiating $\ln \left( {\dfrac{3}{x}} \right)$ . So, differentiation of $\ln \left( {\dfrac{3}{x}} \right)$ with respect to x will be done layer by layer using the chain rule of differentiation. Also the derivative of $\ln \left( x \right)$with respect to $x$ must be remembered.
Complete step by step answer:
To find derivative of $\ln \left( {\dfrac{3}{x}} \right)$ with respect to x we have to find differentiate $\ln \left( {\dfrac{3}{x}} \right)$with respect to x.
So, Derivative of $\ln \left( {\dfrac{3}{x}} \right)$ with respect to x can be calculated as $\dfrac{d}{{dx}}\left( {\ln \left( {\dfrac{3}{x}} \right)} \right)$ .
Now, $\dfrac{d}{{dx}}\left( {\ln \left( {\dfrac{3}{x}} \right)} \right)$
First we differentiate $\ln \left( {\dfrac{3}{x}} \right)$ with respect to $\left( {\dfrac{3}{x}} \right)$, and then differentiate $\left( {\dfrac{3}{x}} \right)$ with respect to x.
Now, Let us assume $u = \left( {\dfrac{3}{x}} \right)$. So substituting $\left( {\dfrac{3}{x}} \right)$as $u$, we get,
$ = $\[\dfrac{d}{{dx}}\left( {\ln \left( u \right)} \right)\]
Now, we know that the derivative of \[\ln t\] with respect to \[t\] is \[\left( {\dfrac{1}{t}} \right)\]. Hence, we get,
$ = $$\dfrac{1}{u}\dfrac{{du}}{{dx}}$
Now, putting back $u$as $\left( {\dfrac{3}{x}} \right)$, we get,
$ = $$\dfrac{1}{{\left( {\dfrac{3}{x}} \right)}}\dfrac{{d\left( {\dfrac{3}{x}} \right)}}{{dx}}$ because \[\dfrac{{du}}{{dx}} = \dfrac{{d\left( {\dfrac{3}{x}} \right)}}{{dx}}\]
Now, we know the power rule of differentiation. Hence, we can apply the power rule so as to calculate the derivative of $\left( {\dfrac{3}{x}} \right)$ with respect to x.
$ = $$\dfrac{x}{3}\left( {\dfrac{{ - 3}}{{{x^2}}}} \right)$
Cancelling the term in numerator and denominator, we get,
$ = $$\left( {\dfrac{{ - 1}}{x}} \right)$
So, the derivative of $\ln \left( {\dfrac{3}{x}} \right)$ with respect to $x$is $\left( {\dfrac{{ - 1}}{x}} \right)$.
Note:The given problem may also be solved using the first principle of differentiation. The derivatives of basic trigonometric functions must be learned by heart in order to find derivatives of complex composite functions using chain rule of differentiation. The chain rule of differentiation involves differentiating a composite by introducing new unknowns to ease the process and examine the behaviour of function layer by layer.
Complete step by step answer:
To find derivative of $\ln \left( {\dfrac{3}{x}} \right)$ with respect to x we have to find differentiate $\ln \left( {\dfrac{3}{x}} \right)$with respect to x.
So, Derivative of $\ln \left( {\dfrac{3}{x}} \right)$ with respect to x can be calculated as $\dfrac{d}{{dx}}\left( {\ln \left( {\dfrac{3}{x}} \right)} \right)$ .
Now, $\dfrac{d}{{dx}}\left( {\ln \left( {\dfrac{3}{x}} \right)} \right)$
First we differentiate $\ln \left( {\dfrac{3}{x}} \right)$ with respect to $\left( {\dfrac{3}{x}} \right)$, and then differentiate $\left( {\dfrac{3}{x}} \right)$ with respect to x.
Now, Let us assume $u = \left( {\dfrac{3}{x}} \right)$. So substituting $\left( {\dfrac{3}{x}} \right)$as $u$, we get,
$ = $\[\dfrac{d}{{dx}}\left( {\ln \left( u \right)} \right)\]
Now, we know that the derivative of \[\ln t\] with respect to \[t\] is \[\left( {\dfrac{1}{t}} \right)\]. Hence, we get,
$ = $$\dfrac{1}{u}\dfrac{{du}}{{dx}}$
Now, putting back $u$as $\left( {\dfrac{3}{x}} \right)$, we get,
$ = $$\dfrac{1}{{\left( {\dfrac{3}{x}} \right)}}\dfrac{{d\left( {\dfrac{3}{x}} \right)}}{{dx}}$ because \[\dfrac{{du}}{{dx}} = \dfrac{{d\left( {\dfrac{3}{x}} \right)}}{{dx}}\]
Now, we know the power rule of differentiation. Hence, we can apply the power rule so as to calculate the derivative of $\left( {\dfrac{3}{x}} \right)$ with respect to x.
$ = $$\dfrac{x}{3}\left( {\dfrac{{ - 3}}{{{x^2}}}} \right)$
Cancelling the term in numerator and denominator, we get,
$ = $$\left( {\dfrac{{ - 1}}{x}} \right)$
So, the derivative of $\ln \left( {\dfrac{3}{x}} \right)$ with respect to $x$is $\left( {\dfrac{{ - 1}}{x}} \right)$.
Note:The given problem may also be solved using the first principle of differentiation. The derivatives of basic trigonometric functions must be learned by heart in order to find derivatives of complex composite functions using chain rule of differentiation. The chain rule of differentiation involves differentiating a composite by introducing new unknowns to ease the process and examine the behaviour of function layer by layer.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

